Advantages and Disadvantages of Chemical Methods in the Elaboration of Nanomaterials

  • Ecaterina Magdalena MODAN University of Piteşti, Romania
  • Adriana Gabriela PLĂIAȘU University of Piteşti, Romania
Keywords: top-dow, bottom-up, methods, elaboration, advantages, disadvantages

Abstract

Reducing the size of macroscopic systems to nanometers can be achieved by top down synthesis by different chemical or physical methods. The bottom-up approach is a method in which the components of the atomic or molecular dimensions are assembled together to form nanoparticles. The bottom-up method is used for the elaboration of nanoparticles, because it allows the control of their size. This article presents a review of the advantages and disadvantages of chemical methods for the development of nanomaterials.

Creative Commons License

References

[1]. Mittal A. K., Chisti Y., Banerjee U. C., Biotechnology Advances, 31 (2), p. 346-356, 2013.
[2]. Ebelmen J. J., Comptes rendus de l'Académie des Sciences 19, 398, (1844).
[3]. Ebelmen J., Annals of Chemistry and of Physics, 57, p. 319-355, 1846.
[4]. Geffcken W., Berger E., Verfahren zur Änderung Reflexionsvermögens Optischer Gläser, Deutsches Reichs patent, 736 411, assigned to Jenaer Glaswerk Schott & Gen, 1939.
[5]. Shek C. H., Lin G. M., Lai. Nanostruct Mater, 11(7), p. 831-835, 1999.
[6]. Bruni S., Cariati F., Casu M., Lai A., Musinu A., Piccaluga G., Solinas S., Nanostruct. Mater., 11 (5), p. 573, 1999.
[7]. Andrei Jitianu, J Solgel Sci Technol, 26, p. 483-488, 2003.
[8]. Mahshid S., Askari M., Sasani Ghamsari M., J. Mater. Process. Technol., 189, p. 296-300, 2007.
[9]. Gash A. E., Tillotson T. M., Satcher J. H., Poco J. F., Hrubesh L. W., Simpson R. L., Chem. Mater, 13(200), p. 999-1007, 2001.
[10]. Tang N. J., Zhang W., Jiang H. Y., Wu X. L., Liu W., Du Y. W., J. Magn. Magn. Mater., 282, p. 92-95, 2004.
[11]. Shaker S., Zafarian S., Chakra C. S., Rao K. V., Int J Innov Res Sci Eng Technol, 2(7), p. 2969-2973, 2013.
[12]. Abolfazl Khodadadi, Majid Farahmandjou, Mojtaba Yaghoubi, Ali Reza Amani, J Am Ceram Soc, 16(2), p. 429-882, 2018.
[13]. Yanming Sun, Jung Hwa Seo, Christopher J. Takacs, Jason Seifter, Alan J. Heeger, Adv. Mater. Technol., 23, p. 1679-1683, 2011.
[14]. Tayseir M., Abd. Ellateif., Saikat. Mitra., J. of Adv in Nanomat, 2, 4, 2017.
[15]. Tai L. W., Lessing P., J. Mater. Res., vol. 7, p. 502-510, 1992.
[16]. Tai L. W., Lessing P. A., J. Mater. Res., vol. 7, p. 511-519, 1992.
[17]. Kakihana M., Yoshimura M., Bull. Chem. Soc. Jpn. vol. 72, p. 1427-1443, 1999.
[18]. Julian Eastoe Martin, J. Hollamby Laura Hudson. Adv Colloid Interfac, 128-130, 5-15, 2006.
[19]. Destrée C., George S., Champagne B., Guillaume M., Ghijsen J., Nagy J. B., Colloid Polym Sci, 286, p. 15-30, 2008.
[20]. Zhong-min Ou, Hiroshi Yao, Keisaku Kimura, J Photochem Photobiol A Chem, 189-1, p. 7-14, 2007.
[21]. Wanzhong Z., Xueliang Q., Jianguo C., Chem. Phys, 330(3), p. 495-500, 2006.
[22]. Hu A., Yao Z., Yu X., J. Appl. Polym. Sci, 2009.
[23]. Marie-Paule Pileni, Cr. Chim 6, 8-10, p. 965-978, 2003.
[24]. Pileni M. P., J. Phys. Chem. C, 17, p. 7476-7487, 2001.
[25]. M. P., J. Phys. Chem. C, 111, p. 9019-9038, 2007.
[26]. Pileni M. P., Acc. Chem. Res., 41, p. 1799-1809, 2008.
[27]. Lopez Quintela M. A., Tojo C., Blanco M. C., Garcia Rio L., J. R. Curr. Opin. Colloid. Interf. Sci., 9, p. 264-278, 2004.
[28]. Cushing B. L., Kolesnichenko V. L., C. J. O. Chem. Rev., 104, p. 3893-3946, 2004.
[29]. Shervani Z., Ikushima Y., Hakuta Y., Kunieda H., K. Colloid. Surf. A: Physicochem. Eng. Asp., 289, p. 229-232, 2006.
[30]. Holmes J. D., Lyons D. M., K. J. Chem. Eur. J., 9, p. 2144-2150, 2003.
[31]. Boutonnet M., Kizling J., Stenius P., Colloid Surf., 5, p. 209-225, 1982.
[32]. Boutonnet M., Kizling J., Stenius P., Maire G., Colloid. Surf., 5, p. 209-225, 1982.
[33]. Bandow S., Kimura K., Konno K., Kitahara A., Jpn. J. Appl. Phys., 26, p. 713-717, 1987.
[34]. Ayyup P., Multani M., Barma M., Palkar V. R., Vijayaraghavan R., J. Phys. C: Solid State Phys., 21, p. 2229-2245, 1988.
[35]. Hou M. J., Shah D. O., In: Attia, Y.A. (Ed.), Elsevier, Amsterdam, 443, 1988.
[36]. Lal M., Chhabara V., Ayyub P., Maitra M. A., J. Mater. Res., 13, p. 1249-1254, 1998.
[37]. Zhang D., Qi L., Ma J., Cheng H., J. Mater. Chem., 12, p. 3677-3680, 2002.
[38]. Maqsood Ahmad Malik, Mohammad Younus Wani, Mohd Ali Hashim, Arab J Chem, 5 (4), p. 397-417, 2012.
[39]. Komarneni S., Li Q., Stefansson K. M., Roy R., J. Mater. Res., 8, 12, p. 3176-3183, 1993.
[40]. ***, Chemical encyclopedia, vol. 1, Moscow: Sovetskaja enciklopedija, p. 567, 1988.
[41]. ***, Hydrothermal synthesis, Wikipedia, the free Encyclopedia.http://en.wikipedia.org/wiki/Hydrothermal_synthesis, 2009.
[42]. Meskin P. E., Ivanov V. K., Baranchikov A. E., Churagulov B. R., Tretyakov Yu. D., Ultrason. Sonochem, 13, p. 47-53, 2006.
[43]. Suslick K. S. Kirk-Othmer, Encyclopedia of Chemical Technology, Ed. J. Wiley & Sons: New York, 26, p. 517-541, 1998.
[44]. Hangxun Xu, Brad W. Zeiger, Kenneth S. Suslick, Chem Soc Rev, 2012.
[45]. Gonzalez J. R., Alcantara R., Nacimiento F., Tirado J. L., Electrochem. Acta, 56, p. 9808-9817, 2011.
[46]. Yang P., Zhang A. Y., Cheng X., Zhou G. J., Lue M. K., J. Colloids Int. Sci., 351, p. 77-82, 2010.
[47]. Aslani A., Bazmandegan-Shamili A., Kaviani K., Phys. B Condens. Matter, 405, p. 3972-3976, 2010.
[48]. Askarinejad A., Bagherzadeh M., Morsali A., Appl. Surf. Sci. 256, p. 6678-6682, 2010.
[49]. Zhu S. M., Zhang D., Chen Z. X., Zhou G., Jiang H. B., Li J. L., J. Nanoparticle Res., 12, p. 2445-2456, 2010.
[50]. Ding C., Ting X. A., J. Am. Ceram. Soc., 93, p. 2675-2678, 2010.
[51]. Ranjbar-Karimi R., Bazmandegan-Shamili A., Aslani A., Kaviani K., Phys. B Condens. Matter., 405, p. 3096-3100, 2010.
[52]. Baykal A., Kavas H., Durmus Z., Kazan S., Topkaya R., Toprak M. S., Cent. Eur. J. Chem., 8, p. 633-638, 2010.
[53]. Theerdhala S., Bahadur D., Vitta S., Perkas N., Zhong Z. Y., Gedanken A., Ultrason. Sonochem., 17, p. 730-737, 2010.
[54]. Koo Y. S., Yun B. K., Jung J. H., J. Magn., 15, p. 21-24, 2010.
[55]. Xiaohua J., Huiqing F., Faqiang Z., Lei Q., Ultrason. Sonochem., 17, p. 284-287, 2010.
[56]. Plăiașu A. G., Editura Universitatii din Pitesti, 2016.
[57]. Barca E. S., Plaiasu A. G., Abrudeanu M., Istrate B., Luca D., Munteanu C., J. Optoelectron. Adv. M., 17, 9-10, p. 1522-1527, 2015.
[58]. Plăiașu A. G, Abrudeanu M., Dicu M., Monty C., J. Optoelectron. Adv. M., 16, 9-10, p. 1116-1112, 2014.
Published
2020-03-15
How to Cite
1.
MODAN EM, PLĂIAȘU AG. Advantages and Disadvantages of Chemical Methods in the Elaboration of Nanomaterials. The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science [Internet]. 15Mar.2020 [cited 19Apr.2024];43(1):53-0. Available from: https://www.gup.ugal.ro/ugaljournals/index.php/mms/article/view/3322
Section
Articles

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.