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Abstract: 

The paper deals with a mathematical model and a numerical simulation procedure for the flocculation process, using 
usual parametrization solutions of the collision frequency and particle fragmentation rate. The results obtained through 
numerical simulation have shown a high sensitivity of the model with respect to the flocs strength that intervenes in the 
expression of the fragmentation rate. It has been illustrated the possibility of the flocculation process control through the 
fluid stirring, that determines the speed gradient that occurs in the expression of the collision frequency. 
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Introduction 

The flocculation process is important in many 
fields as biotechnology, colloidal and polymer 
technologies etc (Han et al., 2003). Liquid-solid 
separation processes are common in biotechnology 
where is the question of the separation cells from 
suspending medium. In all applications where the 
flocculation processes intervene, the synthetic 
polymeric flocculants are used. The synthetic 
polymeric flocculants are added in liquid medium 
in order to destabilize the suspension and promote 
flocculation. In the biotechnology field positively 
charged flocculants are commonly used, because 
the cells are negatively charged (Han et al., 2003). 

Flocculation process modelling issue is widely 
approached in literature (Ahmad et al., 2008), 
(Coufort et al., 2007), (Runkana et al., 2006). 
Within these models the main phenomena that 
appear in the mentioned process are 

mathematically described: aggregation – which 
produces the increase of the flocculants dimension 
– and the flocculants fragmentation. The 
aggregation and fragmentation rates depend on the 
flocculants dimension and the permanent regime 
establishes to the balance of the two rates. 

Within this paper the results obtained through 
numerical simulation of the flocculation process 
are presented. The objective followed in the 
present paper was to highlight the influence of 
physical measurements that affect the process 
efficiency, from the control point of view.   

 

Materials and methods 

The mathematical description of the flocculation 
process is based on the classic model PBM 
(Population Balance Model) introduced by 
Smoluchowski, that describes the aggregation-
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fragmentation processes of the suspensions. The 
two processes are incorporated into the PBM 
through the following integro-differential equation 
with partial derivatives:  
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In this equation n  is the flocculants concentration 
[number/volume unit], v  and u  represent the 
particle volume, t is the current time in the 
flocculation process. The time evolution of the 
particle concentration with the volume v , ( , )n v t , 
is obtained from the four sub-processes that are 
described by the four terms from the right side of 
equation (1). The first term expresses the 
occurrence rate of the particles of the volume v , 
obtained through the particle aggregation of the 
volume u  and v u−  . This yield rate depends on 
the function Q(u,v), named aggregation core of the 
flocculants of volume u  and v . The second term 
describes the decreasing rate of particles of volume 
v , as a consequence of the aggregation of these 
particles of volume v  with other particles. This 
rate also depends on the aggregation rate of 
flocculants, Q(u,v). The third term expresses the 
producing rate of particles of volume v, resulted 
from the particle fragmentation of volume greater 
then v. In the expression of this rate two functions 
intervene: ( )vΓ  and ( , )v uγ . The first function 
represents the fragmentation frequency of the 
flocculants of volume v, and ( , )dv u vγ  is the 
flocculants number that is created in the domain of 
volume [v, v + dv] through the flocculants 
fragmentation of volume u. The last term expresses 
the decreasing rate of the particles of volume v , 
following the events of fragmentation of these 
particles.  

When the aggregation is generated by the speed 
gradients caused by the stirring (mixing), the 
general expression of the aggregation core, Q(u,v), 
is (Coufort et al., 2007):  

( )31/ 3 1/ 3( , ) 0.31Q u v u vε
ν

= +  (2) 

where ε  is the dissipation rate of turbulence 
kinetic energy, and ν  is the kinematic viscosity of 
the liquid.  

PBM model is often written in a form different 
from (1) by expressing the aggregation core as a 
product of the following shape: 

( , ) ( , ). ( , )Q v u v u v uα β=   (3) 

 

where ( , )v uα  is called efficiency factor of the 
collision, and ( , )v uβ  is the frequency factor of 
the collision. Based on these variables, the model 
is as follows: 
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PBM model written in this form allows a more 
detailed approach of the aggregation process, 
through a variety of parameterization procedures of 
collision efficiency and collision frequency factors.  

For numerical simulation of the flocculation 
process the discrete model of the process is used. It 
is assumed that the initial condition is known: 

( ,0) ( )inn v n v=   (5) 

as is the dimension field [0,vmax] of the particle 
volume. In accordance with fixed pivot technique – 
FPT introduced by Kumar (Kumar and 
Ramkrishna, 1996), the continuous interval [0,vmax] 
is divided in a reduced number of cells: 

[ ]1/ 2 1/ 2, , 1,...,i i iv v i IΛ − += =   (6) 

where 

1/ 2 1/ 2 max 1/ 2 1/ 20, ,I i i iv v v v v v vΔ Δ+ + −= = = − ≤
 (7) 

and Δv  is given. For every field is considered the 
center 

1/ 2 1/ 2( ) / 2i i iv v v− += −   (8) 

which is called pivot or grid point. Such a 
partitioning of the spatial domain is known as a 
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cell-centered representation. Figure 1 illustrates a 
typical partitioning of the domain [0,vmax] through 
centered cells. 

Based on this procedure of dimension 
discretization, the integro-differential equation 
with partial derivatives (1) is transformed into an 
ordinary differential equations system. From 
integro-differential equation with partial 
derivatives (4), through discretization, the model is 
obtained as ordinary differential equations: 

max max
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where vi, vj, vk, represent the volume ratio of the 
particles of size i, j and k respectively; jkα  is the 
collision efficiency between two particles j and k ; 

jkβ  is the collision frequency between the 

particles j and k; jS  is the fragmentation rate of 

the particles of size j; ,i jγ  is the function of size i 
fragment distribution that come from the particles 
of size j.   

The equation (9) can be expresses with respect to 
the ratio of size i particle number: 
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where notations are similar to the ones of the 
previous model, except that Ni is the concentration 
of the particle number from the section i [in 

no./cm3]. 

 

Results and Discussions 

For numerical simulation of the process in a given 
applicative context, it is necessary the 
parameterization of the collision efficiency, jkα , 

collision frequency, jkβ , and fragment 

distribution, ijγ . These variables depend on the 
particle nature but the nature and moving speed of 
the fluid too. In (Han et al., 2003) is presented a 
survey regarding the expressions used for jkα , 

jkβ  and ijγ  in different applications. The variety 
of these parametrization expressions illustrates a 
very important idea: concretization of the 
discretized model, given by the equations (9) or 
(10) in numerical simulation purpose requires the 
selection of the parametrization type and the 
numerical coefficients that intervene in the selected 
functions in accordance with the physical 
properties of the simulated system. Further on a 

"nominal" version of the model, in which relatively 
simple assumptions and frequently cited in 
literature are allowed, is considered.  

For each section is defined a characteristic volume, 
vi, which is the average volume of the particles 
contained in the section. The volume vi is 

1

2
i i

i
b bv − +

=    (11) 

where bi  represents the superior limit volume of 
the section i. On the other hand, the volume vi is a 
function of previous volume, vi-1: 

1i iv f v −=    (12) 

Accordingly to the data that can be found in many 
works [4,5,6] (Kumar and Ramkrishna, 1996), 
(Runkana et al., 2006), (Spicer and Pratsinis, 
1996), it was considered f = 2. Moreover, if it is 
admitted that ijα =α, it could be shown that the 
model (10), that offers the distribution of the 
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Figure 1. Discretization of the particle dimensions 
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particle number of size i, can be written as 
equation (5): 
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The number of differential equations of the model 
is equal to the number of sections. In the following 
the numerical simulation has been achieved using 
30 sections, for i = 1,.., imax , where imax = 30. In the 
assumptions considered in the paper, the volume vi 
is 

1
1 2i

iv v −=    (14) 

where v1 is the volume of the primary particle.  

Since it was adopted the collision efficiency 
ijα =α, it results that the collision  frequency, βij, 

reflect, to the constant α, the aggregation core. 
Having in view the equation (2) of the aggregation 
core, a similar equation for the collision  frequency 
from the discretized model of form (5) is obtained: 

1/ 3 1/ 3 3( , ) 0.31 ( )i j i jv v G v vβ = +   (15) 

where G is the spatial average speed gradient. 
Obviously the variable G can be adopted as a 
parameter, because it can be also modified (in real 
time) through physical implementation of the 
system in which the flocculation process is 
achieved. 

The fragmentation rate in section i is a function of 
the particle volume, vi: 

a
i iS Av=    (16) 

where a = 1/3 (Spicer and Pratsinis, 1996). The 
parameter A is a coefficient of the burst rate for the 
fragmentation induced by the fluid movement. 
This parameter is calculated using equation (5): 

' yA AG=    (17) 

where y is a constant inversely proportional with 
flocs strength and 'A  is a constant that is 
experimentally determined. 

For the distribution function of the fragments, ijγ , 
the parametrization solution can be adopted from a 
large number of variants, depending on the 
dominant fragmentation mechanism. Usually two 
mechanisms can be admitted: a) primary particle 
erosion, when small fragments detaches from the 
flocs surface, and b) flocculants breakage. The 
erosion results when the fluid turbulences are 
comparable with the flocculants dimension. The 
breakage mechanisms occur as a consequence of 
the differential pressure that is applied on the 
opposite sides of the flocculants. In (Spicer and 
Pratsinis, 1996) three distinct expressions of the 
fragment distribution function have been admitted: 
binary, ternary and normal breakage. Further on 
the binary breakage was considered, when from the 
initial flocculants two fragments with the same 
volume are obtained. In this case, 

,
j

i j
i

v
v

γ =    (18) 

and in (13) it can be considered imax =i+1.  

In numerical simulation of the flocculation process 
the discretized mathematical model (13) was 
adopted, in which the following parameters were 
used: A’= 0.0047;  y = 1.6; α = 1 ; G = 150 s-1;  the 
primary particle size d1 = 2.17μm, the maximum 
number of pivots imax = 30. The initial values of the 
state vector Ni were established as following: N1 = 
9.3x106 [no./cm-3], Ni = 20/1.2i [no./cm-3], i = 2,..., 
imax . Therefore a hypothetical situation was 
considered, in which the particle concentration is 
large at the primary particle level, and for the rest 
of sections, i = 2,..., imax, the considered 
concentration is significantly less. 

Figure 2 presents the time evolution of the cell 
number Ni(t), i=2,...imax, for the mentioned 
numerical values of the model parameters. In 
Figure 3 the distributions Ni at different moments 
within the interval [0 6000s] were represented. The 
distribution was represented as a function of the 
ratio di/d1, where di, i= 2,  maxi  is the particle 
diameter from section i. The ratio between the 
average diameter of the particle and d1 is 
dmean/d1=25.37. 

52 



Barbu, Caraman, Liga, Nicolau, Ceanga: Modelling and     Innovative Romanian Food Biotechnology (2010) 7, 49-54 
numerical simulation of the flocculation process 
  

This paper is available on line at http://www.bioaliment.ugal.ro/ejournal.htm     

0

10

20

30

0

2000

4000

6000
0

1

2

3

4

5

x 104

it

N
i [n

o.
/c

m
c]

 
Figure 2. Distribution Ni(t), i=2,...imax 
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Figure 3. Distribution Ni as a function of di/d1 at 

different moments (G=150) 

In the flocculation process model, the collision 
frequency influence both aggregation and 
fragmentation of flocculants. It has a dominant 
influence at beginning of the flocculation process, 
when the aggregation subprocess is dominant. 
Analysing the equation (15), which gives the 
collision frequency, it results that the speed 
gradient G, caused by the fluid movement, has an 
important influence on the aggregation. This fact is 
illustrated in Figure 4, where the distribution Ni as 
a function of di/d1 at different moments, when 
G=100 is presented. Unlike the situation when G = 
150 (Figure 3), it can be noticed a reduction of the 
number of the formed particles, but their diameter 
increases: dmean/d1=46. For G=50 the results 
presented in Figure 5 are obtained and 
dmean/d1=90.66. The results presented in Figures 3, 
4 and 5 illustrate the usefulness of adopting a time 
variable regime for the liquid stirring, so that a 
large value of the gradient G results at the process 
beginning, in order to facilitate the aggregation 
process. Then will result a lower value of the 

gradient G to avoid the excessive increasing of the 
fragmentation process rate. Figure 6 presents the 
distribution Ni as a function of di/d1 at different 
moments, when G(t)=200, t=[0,1600) and G(t)=50, 
t=[1600,6000]. In this case is obtained 
dmean/d1=44.23, so a similar process with the one in 
which G=100 in all the time interval [0 6000] is 
obtained. 
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Figure 4. Distribution Ni as a function of di/d1 at 

different moments (G=100) 
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Figure 5. Distribution Ni as a function of di/d1 at 

different moments (G=50) 
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Figure 6. Distribution Ni as a function of di/d1 at 

different moments G(t)=200, t=[0,1600); G(t)=50,  
t=[1600,6000] 
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Figure 7. Distribution Ni as a function of di/d1 at 

different moments G=100, y=1.42 
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Figure 8. Distribution Ni as a function of di/d1 at 

different moments G=100, y=1.78 

The fragmentation rate has an important weight in 
the flocculation process dynamics. This is 
influenced by parameters A’ and y, that depends – 
for the most part – on the nature of the particles in 
suspension. Accordingly to equation (5), the 
variation domain of the parameter y is 
[1.42...1.78]. In order to illustrate the model 
sensitivity with respect to parameter y, Figures 7 
and 8 presents the distributions Ni  for y=1.42 and 
y=1.78 respectively. It can be noticed that in this 
time the flocs strength is large, that means y is 
small, the flocculants concentration is reduced and 
their dimension is large: dmean/d1=83.7. When 
y=1.78, the fragmentation rate is large, the particle 
number is also large, but it results dmean/d1=21.37. 

 

Conclusions 

The flocculation process dynamics is dependent on 
the parametrization modality of the collision 
frequency, βij, and the fragmentation rate of 
particles. The simulation results have shown high 
sensitivity of the model with respect to parameter 

y, that intervenes in the expression of the 
fragmentation rate. Since this parameter mostly 
depends on the nature of the particles in 
suspension, for the control of the flocculation 
process can be used, besides the flocculants 
dosing, the stirring speed of the fluid, which 
determines the variable G from the collision 
frequency expression. The results of the numerical 
simulation have shown the usefulness of adopting 
a control strategy in order impose a large stirring 
speed in the initial period and a lower speed in the 
final part of the process. The numerical simulation 
of the process could be a useful tool for 
establishing this strategy. 
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