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ABSTRACT 
Optimization facilitates in attainment of maximum strength, efficiency, reliability, 

productivity and longevity. In this work, data from three material joining processes - 

Ultrasonic welding of polymers, arc welding as Metal Inert Gas and Tungsten Inert Gas 

are analysed for establishing quantitative relationship between the process parameters 

and for prediction of weld features using Multivariate Linear Regression algorithm. The 

various dependency coefficients and characteristics generated with the ML algorithms 

are in agreement with the inherent dependency as obtained from experimental data and 

simulation results. This investigation is a preliminary attempt with a limited set of data 

to manifest the suitability of machine learning techniques; nevertheless, the results are 

far from conclusive owing to small data set and hence may be extended to precisely 

model joining processes with higher number of process parameters, degree of freedom 

and responses.  

 

KEYWORDS: ultrasonics, gas metal arc welding, machine learning, regression 

analysis, parametric analysis. 

 

 

1. INTRODUCTION 
 

The implementation of artificial intelligence for 

modelling the industrial processes helps in prediction 

and establishing relationships between the process 

parameters and the output features. This section briefly 

describes the welding processes namely Ultrasonic 

welding, Friction Stir and Gas Metal Arc Welding 

considered in this work and the existing literature on 

the Artificial Intelligence (AI) /Machine Learning 

(ML) approaches taken up by various researchers for 

modelling the welding process.  

 Ultrasonic welding uses mechanical vibrations at 

a frequency of 20kHz or 40kHz to soften the injection 

molded components at the intended joint line. The parts 

which are to be fused are secured together under 

pressure and are subjected to vibrations created by a 

welding sonotrode or horn. For this process, the 

parameters of importance are vibration amplitude, 

welding mode, down speed, trigger pressure, weld time 

and hold time. The deposition efficiency in this process 

is generally in the range of 93-97%. Previous research 

work on parametric optimization of this process have 

utilized various branches of AI and ML and have given 

comparable results with respect to experimental values 

and FEM based predictions. Li Y. et al. [12] have used 

the supervised learning mechanism of the Artificial 

Neural network to predict the joint strength and also to 

determine the quantitative relationship between the 

input features and the target parameters. Elangovan S. 

et al. [4], utilized the Response Surface Methodology 

(RSM) with Genetic Algorithm (GA) to determine 

optimum welding conditions resulting in maximum 

joint strength for spot and seam welding of Al 

components and found this as an efficient modelling 

tool. Anand K. Elangovan et al. [1] compared the 

performance of ANN with Multiple Regression 

Analysis (MRA) models for the weld strength 

prediction in Ultrasonic welded Cu joints in terms of 

mean prediction error and found ANN models to be 

more accurate. Mongan P.G. et al. [14] used the ANN 

with GA and further used Lavenberg-Marquardt 

algorithm to train the model for a data set of 37 trials 

and demonstrated high accuracy with mean relative 

error of 6.79%.  

 Arc Welding namely Gas Tungsten Arc Welding 

(GTAW), is a fusion joining process utilizing the heat 

energy of the arc formed between an electrode and a 

workpiece to bring the weld materials to melting point 

and thus fuse together to form the metallurgical bond. 

The electrode either is used for carrying current or also 

as a filler material.  

 Gas Metal Arc Welding (GMAW) is a process in 

which the electrode tip gets melted with the arc energy 

and the molten material is transferred through the arc 

into the weld pool. For the welding of non-ferrous 

metals, inert shielding gases are used to protect the arc 

and the weld pool from atmospheric contamination. 

For GMAW welding, the significant process 

parameters are weld rate, supply voltage, wire feed 
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rate, gas flow rate, Nozzle to Surface Distance (NTSD) 

and torch angle.  

 Ganjigatti J. P., et al. [5] investigated the impacts 

of individual and combination of welding parameters 

on the build geometry using statistical approach of 

multiple least square regression analysis and ANOVA 

to compare the correlations results of non-linear and 

linear regression analysis for MIG welding. Their 

results indicated higher performance of linear analysis 

and emphasized that the performance of any regression 

technique is dependent on the data. Correia D.S. et al. 

[3] used Genetic Algorithms for predicting optimum 

settings for a MIG welding process. Weld voltage, wire 

feed speed and weld speed are considered as the input 

parameters for prediction of penetration depth, 

deposition efficiency, bead width and reinforcement. 

The output parameters showed varying mean errors in 

the range of 3%-46% which could be due to the limited 

data population. Sumesh A. et al. [17] used 

classification algorithms J48 and Random Forest to 

classify the defects in arc welding into lack of fusion 

and burn-through based on arc sound using the input 

parameters of current, voltage and travel speed.  

Artificial Neural Networks (ANN) and Adaptive 

Neuro Fuzzy Inference Systems (ANFIS) have been in 

use for modelling of engineering systems to predict the 

residual stresses in the form of distribution plots 

considering the uncertainty bounds [6]. The results 

from these studies have helped in the characterization 

of the weld to acceptable confidence levels as 

compared to the experimental data. 

 In GTAW, the electrode is used only for carrying 

current. The heat developed due to an arc established 

between a tungsten electrode and the base metal causes 

the base metal and the filler metal to melt and thus fuse 

together to form the weld on cooling down. An inert 

gas is used to eliminate the oxidation of weld metal and 

the filler metal. In this arc welding process, the key 

parameters considered in some of the literatures [7], [8] 

are arc efficiency, weld speed and heat input and their 

influence on the build geometry, mechanical properties 

and residual stresses generated as part of welding is 

investigated. For investigation of residual stresses and 

parametric dependency analysis in welding, support 

vector regression and neuro evolutionary computing 

were used [7], [8] They investigated the hybrid models- 

NN-Genetic Algorithm (GA), NN- Particle Swarm 

Optimization (PSO) and NN-GA-PSO for the 

prediction of residual stress. They also developed the 

hybrid model of Fuzzy support vector regression with 

Genetic algorithm and yielded results faster and more 

accurate than the standalone models.  

 Kesse M.A. et al. [10] proposed an AI algorithm 

applying fuzzy logic and deep neural network for 

predicting the weld bead width with current arc length 

and weld speed as control parameters. The algorithm 

gave a predictive accuracy of 92.59% with 27 trials of 

experimental data sets. Priya B.G. [15] used linear 

regression techniques to predict the tensile strength, 

hardness and grain size of pulsed current TIG weld 

products with peak current, base current, pulse 

frequency and pulse on time as control parameters.  

Korat P. and Sama M. [11] utilized ANN with feed 

forward back propagation algorithm to predict the 

tensile properties and optimize the weld process 

parameters for GTAW welding of Ni base superalloys.  

 Process parameters are generally distributed over 

a large range and the complexity of the 

thermomechanical behaviour keeps the individual 

effects enveloped. This limitation stresses on the 

requirement of research on mechanisms to arrive at 

parameters of importance and thus help in identifying 

the initial process parameters for optimum builds. To 

avoid the issue of overfitting and underfitting of 

models, techniques of regularization and dropout are to 

be implemented. The ML techniques widely adopted 

by various researchers for the industrial application 

processes give results with high accuracy in various 

domains of applications excepting the latest 

manufacturing techniques. This is because of a lack of 

a wide range of training data due to the expense of 

collecting experimental values. Results of ML show 

higher accuracy and reproducibility. for any number of 

analysis/ trials and thus, proves significant in 

optimizing the performance of industrial processes. 

Use of AI methods would serve the requirement of 

selection and prediction of appropriate input 

parameters for an optimum weld for any of the welding 

techniques. Virkkunen et al. [20] advocated the use of 

data augmentation using virtual flaw technology for 

training of ML analysis of ultrasonic process with 

limited data, also suggesting proper validation of 

augmented and training data. Zhu et al. [21] proposed 

a weld defect recognition based on CNN and random 

forest classification algorithm. They testified this deep 

learning method to give a high accuracy to meet the 

requirement of weld defect classification. Mahadevan 

et al. [13] experimented with suitable ML techniques 

for six welding processes. A neural network model and 

ANFIS was experimented to forecast the weld bead 

geometry in TIG and Friction stir welding. They 

worked with CNN and PCA for process monitoring of 

LASER welding. For resistance welding, they 

identified electrode degradation as the problem and 

proposed the use of neuro fuzzy models for controlling 

the current. For GMAW, they used neural networks 

and Response surface Methodology (RSM) to 

determine the feature importance and forecast the weld 

properties while fuzzy neural networks and sensor 

systems were found efficient to optimise key hole 

geometry and for parametric optimization in plasma 

welding. Bacioiu D. et al. [2] designed a system using 

image classification, to emulate operators view and 

established a correlation between the weld pool aspect 

and the weld quality. 

 

2. METHODOLOGY 
 

Data driven models are now finding application in 

manufacturing processes as they enable quick and 
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accurate prediction of the process under analysis. 

These models automatically learn the process input 

output dependencies based on previous data. 

Supervised ML operates with labels of input and output 

data and can be extended to the manufacturing 

processes as there are definitive targets and 

qualification methods involved in these processes. 

Predictive modelling helps in evolving mechanisms to 

optimize the material joining process when there is no 

clear relation between the influencing parameters and 

the weld features like build geometry, residual stress or 

distortion. Linear Regression modelling is employed in 

this work for prediction of build parameters and 

residual stress and for identification of hierarchy of 

process parameters influencing the residual stress 

generated in the manufacturing/ joining process.  

 The existing literature has trivial reporting on the 

application of ML and its feature of correlation to the 

manufacturing processes. This work, thus focuses on 

applying the basic linear regression model to exhibit 

the use of ML techniques in enabling better design of 

the welding processes and in this way promoting the 

multi-disciplinary approach to the manufacturing or 

joining processes.  

 

2.1. Machine Learning Algorithm used for 

       the Study  
 

Supervised learning algorithm is used in this case to 

predict the dependent variable i.e., residual stress from 

a given set of predictors [9]. These algorithms help 

develop a function mapping the inputs to the output 

based on prior experimental or simulation data set 

using scikit-learn. The data set obtained from either 

experiments or from FEA is split up into 70 percent 

training data and the remaining as testing data for 

enabling and validating the data predictions obtained 

using any regression model.  

 Linear Regression Model [18], [19] - This is a 

supervised ML model and the prediction made by this 

model are observed to have a constant slope indicating 

the linear relation of the output with the control 

variables and are continuous. This algorithm is used to 

estimate real values of output parameters as controlled 

by the input parameters based on a regression line. It 

can be applied to single or multiple variables of both 

the control and the controlled parameters. The 

prediction function used in the linear regression model 

outputs the target variable predictions based upon the 

independent process parameters. Based on the 

available data, values of importance of each input 

parameter are estimated and the best fit line is 

established between the independent and dependent 

variables. Ordinary least squares [19] is the technique 

of training a regression model with multiple inputs in 

which the coefficients of the line are derived based on 

Mean Square of Errors (MSE) and the R2 score 

determined from the data. This is the quantity which is 

intended to be kept minimum in the implementation of 

the algorithm.  

 Gradient Descent is another technique [19] of 

training the linear regression model which uses an 

iterative process for the minimizing of the error for 

finding the optimum values of the coefficients. Some 

random values of coefficients are selected and for error 

in each input-output pair, squared error sum is 

calculated. Coefficients are then updated to have 

minimum sum squared error. Regularization methods 

used in the algorithm focus on the absolute size of the 

coefficients or weights assigned to the predictors, thus 

reducing the complexity of regression models.  

 Feature importance techniques [20] are used to 

assign weights to influencing parameters to indicate the 

relative importance of each feature in making a 

prediction of the dependent variable. These techniques 

also help to improve the performance of a model by 

enabling dimensionality reduction. Due to the 

stochastic nature of the evaluation procedure, the 

retrieval of coefficient value is to be performed for a 

few times and the average is then considered to be the 

score of feature importance. 

 

2.2. Data Set for Training ML Algorithm 
 

Availability of experimental welding data in large scale 

is difficult owing to the several constraints in doing the 

experimentation work like lack of resources or financial 

constraints, thus limiting the performance that may be 

obtained from any of the Machine learning models.   

 Previous experimental work by other researchers 

provided the data sets for three different welding 

processes and the same is used in this work using ML 

models for estimating the feature importance and 

predicting the weld characteristics. Selection of data 

sets was made using Design of Experiments for control 

of weld characteristics by the process parameters.   

 Data sets contain trials where the variation of 

input parameters is either continuous or discrete. In 

some cases, the step variations of the input parameters 

are non-uniform, and thus restricts the type of study 

which can be performed using the regression models 

and prescribes for an alternate and appropriate 

algorithm. 

 

2.2.1. Process & Data Set - Butt Joining 

 

Datasets from the previous research work [7], [8] on 

evaluation of residual stresses obtained from Finite 

Element Analysis (FEA) based on the process 

parameters for the butt joining of ASTM A36 mild 

steel plates was used for training the ML regression 

model. Parameters affecting the residual stresses i.e., 

arc efficiency, weld voltage, current and welding speed 

are given as input parameters and residual stress as an 

effect of these parameters is considered to be the output 

for the Linear Regression model. 43 sets of data 

obtained from the FEA of butt-joining process are used 

for machine learning.  70 % of the data is used for 

training the model and 30% is used for testing the 

predictions.  
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2.2.2. Process & Data Set - GMAW 

 

Ganjigatti et al. [5] used the regression analysis -both 

linear and non-linear for establishing the parameter 

interdependencies for the bead-on-plate type MIG 

welding process. The experiment was conducted on a 

semi mechanized welding station for MIG welding 

with structural mild steel as the base material and 

electrode wire steel ER70S-6 as the welding 

consumable.  

 The input parameters chosen were weld speed, 

input voltage, wire feed rate, gas flow rate, Nozzle to 

top surface distance (NTSD) and the torch angle. For 

the 6 input parameters, 2 levels of values were selected, 

thus giving 64 combinations of input process 

parameters. The output variables considered are Build 

Height (BH), Build Width (BW) and Build Penetration 

(BP) (Fig. 1). They formed pareto graphs, figure 2 

showing the relative impact of main and interaction 

factors on the target parameters. 

 

 
 

Fig. 1. Weld Bead after macro etching. Geometry 

parameters: BH-Build Height, BW- Build Width, BP-

Build Penetration [5] 

 

 
 

Fig. 2. Pareto charts of the effects on response:  

S - Speed, V - Voltage, F - Wire Feed Rate, G - Gas 

Flow rate, D - Nozzle to Substrate distance,  

A - torch angle [6] 

 

2.2.3. Process & Data Set - Ultrasonic Welding  

 

Satpathy M. P. et al. [16] analysed and compared the 

Fuzzy Logic and Genetic Algorithm approach to find 

the optimal combinations of process parameters for 

ultrasonic welding of Aluminum and brass for its use 

in the electrical industry. Vibration amplitude, weld 

pressure and weld time are considered as control 

parameters and their impact on tensile shear stress, peel 

stress and weld area has been investigated using 

conventional optimization techniques. The influence of 

all input parameters on the weld samples was 

investigated with the experiments and this data is used 

as testing and training data for the ML algorithm.  

 

3. RESULTS AND DISCUSSIONS 
 

3.1. Butt Joining Parameters 
 

The variation of Arc Efficiency (AE), Weld Speed 

(WS), Arc Voltage (AV), Arc Current (AC), Heat Input 

(HI) and Heat Flux (HF) are considered in this analysis 

for prediction of output parameter values, generation of 

correlation matrix and heat map, feature importance 

plot, regression plots and regression equation 

describing the impact of each parameter in the 

generation of Residual Stresses (RS).  

 

3.1.1. Prediction of Residual Stress Values 

 

Residual stresses field is induced in the welding process 

due to high thermal gradient between the weld interface 

and the base metal. Prior knowledge of dependency of 

residual stress on the process parameters enables 

optimum parameter selection for an efficient weld.  

Actual and Predicted values of residual stress from the 

ML model are tabulated in table 1. The model gave an 

accuracy of 85.54% with 70:30 ratio data segregation 

for training and testing.  

 

Table 1. Predictions for Residual Stress 

 

Actual Predicted 

236.3 234.20 

74.5 157.86 

60.7 42.38 

58.9 59.87 

64.2 93.05 

178.1 191.44 

60.36 62.44 

275 250 

300 383.85 

322.3 337.45 

289 256 

60.36 60.54 

58.93 65.78 

 

3.1.2. Correlation Matrix 

 

Correlation matrix helps estimate the 

interdependencies of target and process parameters. 

The diagonal elements in the heat map represent the 

correlation of the element with itself and thus has value 

1. The scale on the right of the heat map is the legend 

for identification of the colour codes represented in the 
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map. The matrix from table 2 gives the correlation 

coefficients from which weld speed is observed to have 

strong positive correlation and heat input negative 

correlation to the residual stress. The process 

parameters are also seen to have correlation between 

them indicating interdependence and thus should be 

further analysed for dimensionality reduction. 

Correlation of arc voltage, arc current and weld speed 

gives scope for further analysis and removal of 

redundant factors.  All the parameters monitored in the 

weld experiment, irrespective of feature importance are 

considered here to get a broad idea of the ML analysis 

as applied to the manufacturing/ joining processes. 

This explains the non-optimum correlation as the 

feature selection is not considered. 

 

3.1.3. Correlation Heat Map 

 

The correlation Heat Map (Fig. 3) suggests strong 

correlation of weld speed, heat input and thus the heat 

flux on the residual stress. Welding voltage and welding 

current show negative correlation amongst the two. 

Interdependencies amongst the process parameters give 

an idea of the complexities involved in designing an 

optimum weld parameter setup and should be analysed 

to find the maximum correlation. One parameter from 

the pair of parameters having the maximum correlation 

can be thus ignored in the design sequence.  

 

3.1.4. 3D-Plot of Influential Parameters 

 

The 3D plot shows the isolated impact of heat input and 

welding speed on the residual stress, instead of 

including all other parameters of lesser/indirect impact 

on the residual stress. The darker points are nearer than 

the lighter ones and this helps to interpret the 

interactivity of the two process parameters with the 

output parameters (Fig. 4). 

 

Table 2. Correlation matrix 

 

 AE WS AV AC HI HF RS 

AE 1 0.46069 0.2298 -0.1766 0.8207 0.8207 0.1281 

WS 0.041 1 -0.008 -0.02079 0.046 0.046 0.877 

AV 0.2296 -0.0084 1 -0.888 0.3904 0.3904 0.0925 

AC -0.1766 0.02079 0.046 1 -0.0817 -0.0817 0.0407 

HI 0.8207 0.04606 0.3904 -0.0817 1 1 0.1647 

HF 0.8207 0.0460 0.3904 -0.0817 1 1 0.1647 

RS -0.1281 0.8779 -0.0925 0.0407 -0.1647 -0.1647 1 

 

  
  

Fig. 3. Correlation heat map Fig. 4. 3D dependency plot 

 

3.1.5 Hierarchy of influential parameters: 

 

Feature importance is the score assigned to the input 

features based on their effect in predicting the target 

variable [9]. This score is of importance in predictive 

modelling as it provides insight into the data and the 

process model.  

 The feature importance chart figure 5 identifies 

the significant features based on the coefficients 

(weights) assigned to parameters in the regression 

model trained with the given data set [7], [8].  

 The assigned coefficient values and the 

intercept value thus help generate the regression equation 

for the used process model. Regression equation for 

residual stress (RS) as generated from the Linear 

regression model is: 

 

𝑅𝑆 = 1224 ∗ 𝐴𝐸 + 109 ∗ 𝑆 + 37.08 ∗ 𝐴𝑉 + 6.03 ∗
𝐴𝐼 − 1.176 ∗ 10−8 ∗ 𝐻𝐼 − 9.36 ∗ 10−5 ∗ 𝐻𝐹 −
1648.71                                                                (1)  

 

where, AE- Arc Efficiency, S-weld Speed, AV-weld 

voltage, AI-weld current, HI-Heat Input, HF-Heat Flux. 
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Fig. 5. Feature importance chart: 0 - Arc efficiency, 

1-welding speed, 2- welding voltage, 3- welding 

current, 4-heat input, 5- heat flux 

 

3.2 GMAW PARAMETERS 

 
3.2.1.  Multi Output Regression 

 

The dataset used for the second analysis described 

the variation in the build geometry- i.e., Build Height 

(BH), Build Width (BW) and Build Penetration (BP) 

due to the variation in weld speed, voltage, wire feed 

rate, gas flow rate, nozzle to surface distance and the 

torch angle [9]. This dataset did not include the 

continuous variation of input parameters and their 

impact on the target, instead considers the variation 

of the build geometry for two levels of the process 

parameters. The lesser range of data variation caused 

restricted results from the ML analysis. 

3.2.2. Prediction of Build Geometry Values  

 

The data set of 64 trials was used to train the linear 

regression model to predict the build height, width and 

penetration. The result of the prediction of the three build 

geometry parameters (Table 3) is attained with an 

accuracy of 82.8%. 

 

3.2.3.  Correlation Matrix 

 

Correlation matrix, Table 4 shows no correlation between 

the input parameters indicating no redundancy of factors 

considered for study and clearly quantifies the 

dependence of the input and target variables and also 

amongst the three target variables. 

 

3.2.4. Correlation Heat Map 

 

Visual representation of the correlation matrix in the form 

of heat map figure 6 helps broad identification of the 

dependencies, here indicating strong negative correlation 

of weld speed on the build height, width and penetration. 

Weld voltage is observed to have negative correlation 

with build height and medium correlation to build width 

and build penetration. Torch angle has strong negative 

correlation with build penetration and medium on build 

height. Correlation exists between the target variables as 

was observed in the correlation matrix. The correlation 

heat map can be compared with the pareto curves 

generated in [9] to correlate the results shown with the 

two analyses with the heat map having the advantage of 

indicating positive or negative correlation as well. 

Table 3. Predicted and actual values of build geometry 

 

Data Order 

No. 

Actual  

BH 

Predicted 

BH 

Actual  

BW 

Predicted 

BW 

Actual  

BP 

Predicted 

BP 

24 3.165 2.761 8.002 9.019 1.991 2.06 

39 3.934 3.697 8.904 10.345 1.865 2.082 

52 3.259 3.614 12.457 11.93 3.335 2.717 

27 3.367 3.330 8.298 7.87 1.935 1.949 

44 2.447 2.476 10.083 10.03 1.914 2.061 

2 3.134 3.419 11.447 11.31 1.797 2.451 

21 3.786 3.611 7.821 9.59 1.679 1.726 

62 3.328 3.283 12.216 12.15 2.202 2.411 

41 3.806 3.652 8.258 9.55 1.626 1.774 

50 3.159 2.999 7.435 8.094 1.448 1.643 

38 4.348 4.083 8.885 10.06 2.48 2.344 

54 3.267 3.242 11.822 12.20 2.06 2.363 

35 3.257 3.514 11.565 11.21 2.109 2.454 

26 3.204 3.317 8.948 7.89 1.976 2.042 

57 2.729 2.902 9.34 9.704 2.596 2.371 

49 3.047 2.986 8.238 8.112 1.455 1.736 

3 4.434 3.987 8.935 10.173 2.504 2.341 

40 4.109 3.711 8.726 10.327 1.702 1.989 

36 2.969 3.129 12.726 11.48 2.182 2.192 

10 3.219 3.2308 8.029 7.146 1.86 1.686 

56 4.21 3.752 8.885 10.282 1.551 2.037 
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Data Order 

No. 

Actual  

BH 

Predicted 

BH 

Actual  

BW 

Predicted 

BW 

Actual  

BP 

Predicted 

BP 

19 4.01 3.983 8.556 9.334 2.175 2.081 

34 3.229 3.187 12.582 12.26 2.413 2.408 

60 2.346 2.472 10.21 9.19 1.842 1.801 

17 4.425 4.042 9.498 10.11 2.508 2.296 

 

Table 4. Correlation Matrix 

 

 WS V WFR GFR NTSD TA BH BW BP 

WS 1 0 0 0 0 0 -0.69 -0.559 -0.37 

V 0 1 0 0 0 0 0.5341 0.65 0.457 

WFR 0 0 1 0 0 0 0.15 0.1690 0.323 

GFR 0 0 0 1 0 0 -0.012 0.0172 0.077 

NTSD 0 0 0 0 1 0 0.088 -0.08 -0.032 

TA 0 0 0 0 0 1 -0.2752 0.0271 -0.4767 

BH -0.69 -0.53 0.15 -0.012 0.06 -0.27 1 -0.0763 0.1577 

BW -0.5597 0.6560 0.1690 0.0172 -0.0851 0.0271 0.0763 1 0.6416 

BP -0.3763 0.457 0.3239 0.077 -0.032 -0.4767 0.1577 0.6416 1 

 

 
 

Fig 6. Correlation heat map 

 

3.2.5. Hierarchy of Influential Parameters 

 
Hierarchical importance of features on all the 3 build 

geometry parameters can be identified with the 

feature importance graph. The graph from the figure 

7 shows the impact of input parameters on the build 

geometry in the form of strong negative coefficients 

(weights) of weld speed and voltage and positive 

coefficient of wire feed rate, with impact of other 

parameters also shown in their reduced strength.  

 

 
 

Fig. 7. Feature importance chart 

3.3. UW PARAMETERS  

 
Multi output regression is used for finding the 

dependencies of Peel Stress (PS), Weld Area (WA) and 

Tensile Shear stress (TS). The available data set was 

obtained from previous experimental works using DOE 

considering three levels for weld pressure and time 

respectively and five levels of variation in vibration 

amplitude to estimate the effects of the factors over the 

complete range of experimental conditions. The data set 

is split up to train the linear regression model with 75 % 

data used as training data and 25% as test data resulting 

in the following performance parameters:  

− Root Mean Square Error (RMSE) value = 1.59 

− R2 score = 0.082 

− Model Accuracy obtained = 90.44% 

Based on training the regression model, the regression 

equations generated for the three output parameters are: 

 

TS=0.06*A+2.93*P+ 0.92*t-3.05       (2) 

 

PS= 0.01*A+0.46*P+0.038*t -0.25             (3) 

 

WA= 0.79*A+17.58*P+29.71*t-18.33     (4) 

 

where: A-vibration amplitude, P-pressure, t- vibration 

effect time duration 

 

3.3.1. Prediction of Output Parameters 

 

With the mentioned performance metrics, the comparison 

of the output parameter values from the data set and those 

predicted by the regression model is given in Table 5. 

 

3.3.2. Correlation Matrix  

 

The dependency coefficients between the input 

parameters of amplitude, pressure and time influencing 
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the output parameters of tensile shear stress, tensile 

peel stress and the weld area are listed as correlation 

matrix in Table 6.  

Static pressure exerted on the weld stack and 

the vibration amplitude are the factors that control 

the weld characteristics and is accordingly quantized 

in the correlation matrix. 

 3.3.3. Correlation Heat Map  

 

Figure 8 generated from the coefficients of the correlation 

matrix helps in visualizing the effects of vibration 

amplitude, pressure and time on the output parameters. 

The weld area and time and also peel stress and shear 

stress have correlation between 0.5 to 1 while other 

parameters show lower correlation. 

 

Table 5. Predicted and actual values 

 

Actual Shear 

Stress [MPa] 

Predicted Shear 

Stress [MPa] 

Actual Peel 

Stress [MPa] 

Predicted Peel 

Stress [MPa] 

Actual Weld 

Area [mm2] 

Predicted weld 

area [mm2] 

1.57 1.53 0.58 0.51 48.24 51.76 

1.27 1.35 0.52 0.5 42.1 45.81 

1.15 1.83 0.5 0.65 44.4 45.03 

3.23 1.82 0.74 0.61 50.03 46.39 

3.39 2.01 0.76 0.62 52.22 52.33 

2.8 2.6 0.79 0.75 52.45 54.49 

0.78 2.085 0.47 0.58 58.45 62.45 

2.05 2.12 0.7 0.69 48.95 46.79 

0.85 2.56 0.44 0.68 68.25 68.8 

1.7 2.38 0.58 0.67 65.95 62.85 

2.1 3.15 0.55 0.77 70.53 72.31 

1.4 2.2 0.56 0.66 55.45 56.91 

  

Table 6. Correlation Matrix 

 

 Amp  

[μm] 

Pressure 

[MPa] 

Time  

[s] 

Shear Stress 

[MPa] 

Peel Stress 

[MPa] 

Weld Area 

[mm2] 

Amp [μm] 1.00E+0 -2.11E-17 2.43E-17 0.239664 0.371456 0.466432 

Pressure [MPa] -2.11E-17 1.00E+0 7.68E-18 0.415227 0.4351 0.161338 

Time(s) 2.43E-17 6.68E-18 1.00E+0 0.13948 0.050514 0.806178 

Shear Stress [MPa] 2.4E-1 4.15E-01 1.39E-01 1.00E+0 0.915303 0.40341 

Peel Stress [MPa] 3.71E-01 4.35E-01 -5.05E-02 0.915303 1.00E+0 0.494841 

Weld Area [mm2] 4.66E-01 1.61E-01 8.06E-01 0.40341 0.294821 1.00E+0 

 

 
 

Fig. 8. Correlation heat map 

 

The data set utilized for this analysis does not indicate 

continuous variation of the input parameters. Different 

levels of variation are considered for the three input 

parameters to observe the behavior of the output 

parameters when one or more of the process parameters 

is held constant and the others are varied. Although the 

data pattern is different, the performance metrics 

remains unaltered and the accuracy recorded is 

90.44%.  

 

4. CONCLUSIONS  
 

The aim of this work was to examine the robustness of 

ML based regression analysis to the different 

techniques and data sets of welding process. The 

different data sets for various processes that were used 

in this work for training the regression models and the 

results obtained herewith, reinforce the idea that the 

performance of ML models adopted for any system 

depends on the available data.  The data analysis and 

visualization techniques for a process analysis depends 

on the scale and type of data set. The conclusions 

drawn from this study on applying linear regression 

analysis for joining processes are as follows: 

 

a. Butt Joint 
Predictions of residual stress obtained with an accuracy 

of 85%. Strong positive correlation is shown between 

weld speed and residual stress while negative between 
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the heat input and stress. Feature importance graph 

shows arc efficiency followed by weld speed to be 

significant features impacting the residual stress. The 

data set that is available may be used to augment the 

data to enhance a restricted data set or can be used for 

prediction of residual stress for theoretical analysis 

purposes.  

 

b. Gas Metal Arc Welding  
Predictions of weld bead geometry obtained with an 

accuracy of 82.8% accuracy in the predictions. The 

data set is limited to two levels of input parameters. 

Parameters of build geometry – width, height and 

penetration are taken as the output variable and 6 input 

parameters are considered. As per the analytics, the 

weld speed has negative correlation to the three output 

parameters, weld voltage has strong negative 

correlation with the build height and positive with 

build width and penetration. Wire feed rate has positive 

correlation to all the build parameters.  

 

c. Ultrasonic Welding 
Predictions of Stress values and weld area obtained 

with an accuracy of 90.44%, but the data set used in 

this case has different number of levels of input 

parameters. Regression equation is obtained for the 

three output parameters of tensile shear stress, peel 

stress and the weld area. Correlation matrix indicates 

positive correlation between vibration time and weld 

area and also between peel stress and shear stress.  

The analysis conducted as part of this work were 

focused on prediction of residual stress, weld 

geometry, tensile shear stress and on establishing their 

dependency on the process parameters. The correlation 

study has given observations of importance of the 

controlling parameters and their interdependencies. 

The study is of exploratory nature and thus, firm 

establishment/ generalization of the regression and 

correlation as appropriate tool for analyzing varying 

data types and format may be injudicious. However, 

the favorable results though for a limited set of data’ 

institute the need for further investigations on the 

viability of this algorithm with unmethodical variation 

in collected data, large data sets, and multiple 

governing parameters. Extension of this work with 

larger data set - obtained experimentally or through 

FEA with data analytics using ML techniques may 

result in better planning and design of the joining 

process with optimum parameter selection.  

ML modeling and analysis also enables 

dimensionality reduction which helps reduce 

redundancy and complexity involved in the prediction 

modelling. Accurate results for feature prediction using 

the ML models will depend on appropriate algorithm 

selected for the given set of data.  

This work is an illustration of a multidisciplinary 

approach to the study of joining processes using ML that 

partially reveal benefits and detrimental aspects of these 

techniques to industrial applications. It emphasizes that 

with the availability of larger data set, the machine 

learning can be effectively employed for optimum 

design of any manufacturing / joining process.  
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