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ABSTRACT 
The research focuses on the behaviour and process parametric influence on friction 

stir welded Al metal matrix composites reinforced with varied percentages of SiC, 

B4C, and Mg. The experimentation involves fabrication of Al metal matrix composites 

followed by friction stir welding and, subsequently, evaluation of the joint properties 

in terms of mechanical strength, microstructural integrity, and quality. In comparison 

to other joints with varied base material compositions, the weld exhibits refined grains 

and uniform distribution of hybrid particles in the joint region, resulting in increased 

strength. Higher SiC composition adds to greater strength, better wear 

characteristics, and harness, whereas B4C percentage is linked to hardness. The 

maximum ultimate tensile stress for a particular sample was determined to be around 

160MPa, while the maximum percentage elongation was found to be around 165 for 

10% SiC and 3% B4C. As the amount of SiC declines and that of B4C rises, the 

percentage elongation decreases. In samples with a B4C weight percentage of 10%, 

the greatest hardness measured was around 103Hv. For a load of 30N, the wear rate 

was as high as 12gm/s with a SiC weight percentage of 10. For lower load values and 

a higher percentage of B4C, the wear rate often decreased. Chemical properties are 

barely changed. Therefore, the materials keep their original qualities after welding. 

During the non-destructive testing process, no large cracks, pores, or clusters of pores 

are found, indicating that the weld is of good quality. To achieve a satisfactory weld, 

optimal ranges based on analysis using machine learning of rotary tool speed, tool 

linear velocity, transverse speed are maintained. Linear Regression algorithm, 

Random Forest algorithm and Lasso Regression algorithms are being used and the 

results are also compared. This work covers a wide range of topics, and the results 

are found to have improved significantly in most cases and is in good agreement with 

data previously presented in the literatures. 

 

KEYWORDS: Metal matrix composites, linear regression, Machine Learning, 

tensile test, Random Forest Algorithm, optimization, microscopy. 

 

 

1. INTRODUCTION 
 

Aluminum alloys are reinforced with hard ceramic 

particles in numerous industrial applications to 

improve the mechanical properties of Al-MMC 

(Aluminum Metal Matrix Composites) [1] - [3]. Al-

MMC is a lightweight material with high stiffness, 

hardness, strength, melting point, and wear resistance 

[4] - [6]. Aluminum metal matrix composites are only 

used for long-term applications such as military 

weaponry and aerospace because of their greater 

production costs. Al-MMC is also used in car 

components such pistons, engines, disk brakes, 

cylinder liners, and drum brakes [7], [8]. Within the 

weld region's matrix and reinforcing particles, fusion 

welding of aluminum MMC produces brittle 

intermetallic components. The stress produced by the 

weld reduces joint efficiency and exposes porosity and 

voids at the joint [9], [10].  

 A non-consumable spinning tool with higher 

toughness than the base material is pitched into the 

faying/butt ends of the plates to be welded in the 

friction stir welding (FSW) process. They are subjected 

to an axial force that is created along the joint line. The 

frictional heat generated by the tool during the spinning 

operation softens the material that is subjected to the 

rotational movement of the tool pin. The revolving tool 

moves the plastically warped material from the tool's 
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front to the tool's backside. The weld is easier to 

achieve with subsequent forging. 

 Ali et al. [11] studied and linked the hardness and 

tensile parameters of weld specimens in 

AA6061/SiC/B4C composites to microstructural 

variation. When the time of exposure of the FSW tool 

is long, the nugget zone and grain growth are 

influenced, according to Palanivelet al. [12].  

Storjohann, D et al [13] examined the degradations and 

microstructure evolutions of the reinforced Al MMC 

with Al2O3 during fusion welding and correlated it with 

the thermodynamic calculations. Decomposition of 

Al2O3 was predominant during the joining process. In 

SiC whisker-reinforced composites, during the friction 

joining process, the decomposition of SiC to Al4C3+Si 

occurred owing to the reaction with molten aluminium.  

Reorientation of SiC whiskers near the boundaries of 

the dynamically recrystallized and thermo-

mechanically affected zone (TMAZ) was recorded 

[14]. Threaded cylinder profiled tool made of H13 steel 

with a D/d ratio of 2 yielded weld joints of highest 

strength. Besides, the weld zone microstructure of the 

Al-10% ZrB2 MMC and Al-10% SiC welded using 

H13 threaded cylinder tool demonstrated considerable 

grain refinement with the precipitates homogeneously 

distributed [15]. 

 There are adequate literatures on FSW of SiC and 

B4C reinforcement Al MMC, for which industrially 

acceptable mechanical property ranges and 

microstructural integrities for dependability have been 

determined. Reports on weldability research on these 

MMCsin particular, are limited and lack an 

interdisciplinary approach. This opens up more 

possibilities for research into temperature effects on 

microstructures, process parametric effects on weld 

efficiency, and mechanical behaviour analysis. As a 

result, this research aims to fabricate Al-MMC 

reinforced with various SiC, B4C, and Mg particles, 

subject it to FSW, followed by mechanical tests and 

microstructural investigations of the welded samples. 

Subsequently, process parametric influences on the 

weld performance are established. Furthermore, 

process parameters are generally distributed over a 

large range and the complexity of the 

thermomechanical behaviour keeps the individual 

effects enveloped. This limitation stresses on the 

requirement of research on mechanisms to arrive at 

parameters of importance and thus help in identifying 

the initial process parameters for optimum builds. To 

avoid the issue of overfitting and under fitting of 

models, techniques of regularization and dropout is 

implemented.  

 The ML techniques widely adopted by various 

researchers for the industrial application processes give 

results with high accuracy in various domains of 

applications excepting the latest manufacturing 

techniques. This is because of a lack of a wide range of 

training data due to the expense of collecting 

experimental values. Results of ML show higher 

accuracy and reproducibility for any number of 

analysis/trials and thus, proves significant in 

optimizing the performance of industrial processes. 

Use of AI methods would serve the requirement of 

selection and prediction of appropriate input 

parameters for an optimum weld for any of the welding 

techniques. 

 

2. EXPERIMENTS 

 

Metal matrix composites with AA6061 matrix and B4C 

and SiC reinforcements in various percentage 

compositions respectively is fabricated using the stir 

cast technique. The friction stir welding method is 

applied to each of these combinations independently 

during each of the trials which are carried out by 

altering the parameters of the FSW procedure. The 

welds are next examined for strength, microstructural 

integrity, and quality.  

 

2.1. Preparation of Composite Materials 

      (Phase-I) 
 

The metal matrix composites of Al that are 

strengthened with B4C and SiC are prepared in a 

crucible furnace. Degassing tablets containing 

hexachloroethane are used to remove dross. B4C and 

SiC are pre-oxidized for 2 hours at 650°C before being 

placed into the liquid matrix (AA6061) and swirled at 

a constant rate. Heat treatment of B4C is used to build 

a layer on SiC to increase molten metal bonding. 

Following the addition of B4C and SiC, the melt is 

stirred at a consistent rate at a defined ideal speed and 

time, 500 rpm for 10 minutes. The molten metal is then 

poured into an iron die mold. There are no signs of 

macro casting flaws. Magnesium was added to the 

alloy throughout the stirring and melting process to 

improve particle wettability.  

 

2.2. Setup for the Experiment 
 

The outside shell of the electrical furnace has 

dimensions of 500x500x500 mm, the crucible volume 

is 180 mm diameter, 250 mm height, and the conical 

bottom is 60 mm, and the furnace height is 0.75 m.  

 

 
 

Fig. 1. Stir casting set up 
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 The furnace is powered by a 230V, 6kW motor. 

The working temperature of molten metal is 9900.1°C, 

and the maximum temperature that may be sustained is 

1200°C. The stir casting unit was used to fabricate the 

Al-MMC’s (Fig. 1).  Spindle speed ranging from 250-

500rpm, stirring time of 8 minutes, melt temperature of 

900oC, SiC&B4C particles preheat temperature of 

600oC and powder feed rate ranging between 0.75 to 

1.0g/s were during the stirring process.  

 

2.3. Al-FSW MMC's Experimental Approach  

       (Phase-II) 

 
 An average 325 mesh size of SiC and 30 nm of 

B4C particles are reinforced on Al6061. Mg is added 

to increase the wettability of SiC and B4C powders and 

their behaviour in Al melts. Table 1 shows the 

composition percentages of the samples that will be 

used in the experiment. 

 

Table 1. Composition of various samples in wt. %. 

 

Sample no Al [%] SiC 

[%] 
B4C [%] Mg [%] 

1 82 12 4 2 

2 82 10 6 2 

3 82 8 8 2 

4 82 6 10 2 

 

 
 

Fig. 2. Friction stir welded sample 

 

 The work piece samples of 150 x 150 x 6 mm are 

prepared for a friction stir weld. The FSW tool is 

composed of H-13 tool steel and has a 25 mm shoulder 

diameter. A cylindrical tool with a diameter of 6 mm 

and a height of 5.7 mm is used for the study. The FSW 

process parameters approximate ranges were found 

after a few trial-and-error trials utilizing FSW 3T 

300NC machine. Following that, 81 trials were carried 

out based on the design of experiments (DOE), with 

different levels of process parameters. However, 

because the scope of the paper is focused on the 

properties and behaviours of the weld, the detailed 

information from the DOE-based trials is not discussed 

here. Nonetheless, a detailed study of DOE-based trials 

for process parametric optimization is conducted, but it 

is not presented here because it is outside the scope of 

this paper's objectives. For the trials, the FSW tool's 

rotating speed, travel speed, and plunge force were 

1000 rpm, 75 mm/min, and 10 KN, respectively. For 

tensile test specimens, the welded specimens are cut 

along the cross-sections according to ASTM (E8M) 

standards. The welded specimen is shown in figure 2. 

 

3. MECHANICAL TESTING  
 

FSW samples were subjected to strength, quality, and 

metallurgical integrity.  

 

3.1. Tensile Testing  
 

Tensile tests were performed at room temperature 

using an INSTRON 8801 universal tensile testing 

equipment with a capacity of 40 tonnes (High 

Wycombe, UK). The ASTM (E8M) standard was used 

to prepare the specimens. Figure 5 depicts the results 

for tested samples. It can be seen that the first sample, 

which contains less B4C than the other samples, results 

in a higher final tensile stress for the first sample. The 

use of Al in increasing percentages enhanced the 

tensile strength [13]. This is due to the high plasticity 

and density of Al, as well as to the fact that at the right 

temperature, the tensile strength of Al in the region 

improves, contributing to the total strength. The 

ultimate tensile strength of SiC and B4C improves by 

10% and 3%, respectively. 

 Tensile strength falls when the percentage of SiC 

decreases and B4C rises, suggesting proportionality 

between SiC percentage and inverse proportionality for 

B4C percentage. The even dispersion of fine Al-SiC 

particles is to blame for this. Higher SiC percentages 

resulted in more Al-SiC particle precipitates during the 

solidification of the homogeneous solution, resulting in 

the highest composite strength. The maximum yield 

stress achieved is 142.58 MPa, which is well within 

most applications' acceptable range. With a decrease in 

SiC, and a rise in B4C content, the percentage 

elongation dropped from 6.48 to 4.08. The huge 

number of dislocations in the aluminium metal matrix 

accounts for its great strength. Due to the resulting 

internal tensions, additional dislocations were 

produced by SiC and B4C particles during the 

production of Al-composite. Because of the 

discrepancy between the thermal expansion 

coefficients, each of the reinforcement particles cools 

at a different pace from the weld process temperature. 

Furthermore, the FSW process is responsible for the 

homogenous dispersion of these particles at the joint 

due to friction and grinding action. The dislocation 

density of SiC and B4C particles, plastic deformation, 

and interactions between dislocations are all elements 

that contribute to the strengthening of composite joints 

after the FSW process. At high temperatures, SiC has 

a high strength-to-weight ratio and a high strength 

retention. When this is added to a metal matrix 

composite, it improves chemical stability and reduces 

non-catastrophic failures, which are not discussed 

because they are beyond the scope of this study. It is 

crucial to note, however, that processing SiC at high 

temperatures is only recommended when the 
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reinforcement will be processed at high temperatures. 

The use of monolithic ceramics is also increased, 

resulting in composites that are more fragile. The 

thermal expansion coefficient between the 

reinforcement and the matrix contributes to the thermal 

cooling stress from the processing temperature during 

the FSW process. 

 Figure 3 shows SEM micrographs of worn 

surfaces under varying stresses of 10 N and 20 N. 

Because of the frictional heat produced during 

welding, the particles agglomerate in the weld zone. 

The sample used for the characterization is 4*3*0.5 

cm3.  Figure 3 show SEM micrographs of the 20 N 

load. Along with the SEM micrographs, the matching 

EDAX analysis is also shown. Al and reinforcing 

particle peaks were found. Small peaks of Fe were 

seen, indicating that the reinforcing particles abraded 

the steel surface. Particles are evenly dispersed, and 

there is no wear on the worn surface at greater weights. 

The presence of delamination with severe plastic 

deformation in a few cases indicates adhesion wear. 

The existence of oxidative driven wear is indicated by 

the presence of O peaks in all EDAX studies. It can be 

deduced from figure 3 that the friction coefficient 

increases as the load increases, resulting in material 

loss from the surface.  

 

 
 

Fig. 3. SEM Images with EDAX at the FSW interface 

 

 The material loss from the surface is investigated 

via SEM analysis. Wear debris and ploughing marks 

can be seen, but they aren't significant enough to 

influence the material's behaviour. With increasing 

velocity, the friction coefficient rises. The rate of wear 

of composites increased as the load rose. This is 

because of direct metal-on-metal contact, which causes 

wear debris to accumulate. For 5 wt. percent to 10 wt. 

percent SiC, the wear rate was practically constant, and 

from 10 wt. percent to 15 wt. percent, the wear rate 

increased linearly. By restricting dislocation mobility, 

the reinforcing particles reduced plastic deformation. 

When Al is subjected to counter steel abrasion, it 

quickly combines with air oxygen and generates 

aluminium oxide on the surface. The energy dispersive 

spectroscopy (EDAX) examination reveals all the 

ingredients that occurred from the steel abrasion, 

including reinforcing particles, Fe, and O. The 

reinforcement particles eroded off the surface when the 

normal load rose, resulting in a higher wear rate. 

Elemental analysis of the macro regions in weld zone 

were carried out with SEM integrated with EDAX. 

This presented details on distribution of alloying 

elements in the stir zone of FSW welds. SEM image 

was analysed at different magnification of 50X, 500X, 

1000X and 2000X.The carbon percentage in base 

metal, HAZ, TMZ and Nugget zone is 31.2, 26.4, 33.5 

and 16.2 respectively. The oxygen percentage varied 

between 6-8%, the silicon percentage varied between 

4-10%, the Fe percentage varied between 2-3.7% and 

the Boron one varied between 3-4% as observed from 

the elemental analysis.  

 

4. NON-DESTRUCTIVE WELD TESTING 
 

A radiography test is performed to determine the 

quality of the welds. 

 

4.1. Radiography Examination 

 
Friction stir welded Al-MMC samples are placed 

between the radiation sources (Ir 192, Co 60, and Cs 

137 (in rare situations) and the radioactive film pores, 

cracks, and discontinuities are identified using 

differences in picture intensity. The sample size used 

for the test is 10*4* 0.5 cm3. The images revealed the 

presence of negligible discontinuities in the tested 

specimens. The welded specimens are free of flaws and 

discontinuities. There are no pores or pore clusters to 

be found.   

 The formation of tiny pore clusters in the matrix 

metal occurs in a small number of samples, mostly 

welded with high tool rotating speeds and low 

transverse speeds. Pores around the reinforcing particle 

clusters may degrade the region's strength marginally, 

but they have no effect on the weld qualities. 

 

5. CHARACTERISATION OF WELD 

    MICROSTRUCTURE 
 

The tests are carried out on the cross-sections of Al-

MMC cylindrical pellets reinforced with SiC and B4C 

particles. For Al, Si, and B compositions, elemental 

mapping is used to study the crystalline phase particle 

distributions. The metallic infiltration segregation in 

the ceramic matrix channel in the composite cools to 

the point of detection, and SEM integrated EDAX 

analysis is used to identify it (Fig. 3). Si and Al phase 

grains of varying sizes are dispersed in the small gaps 

between B4C particles. The Al phase controls the solid 

solubility of various reinforcing particles, and it's 

worth noting that there's very little Al in SiC pellets. 

The Al phase is circumscribed by composite with B4C 

and Si particles where the high angle pitted samples 

intersect with the electron beam and the B phase is 

circumscribed by composite with B4C and Si particles 

100µm

m 

100µm 
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where the high angle pitted samples interact with the 

electron beam. The Al-MMC consists primarily of 

finer domains with diameters ranging from 0.25 to 2 m. 

 This may also be linked to the materials' better 

hardness and bond stability. The quality of the joints has 

been assessed using microhardness measures and tensile 

testing. Reduced welding times have been observed 

that are due to an increase in pressure during FSW, 

which, in turn, lead to a rise in joint strength. When 

aluminium alloys are friction stir welded with austenitic 

steel, they become elastic. The microstructure of the 

weld specimen is shown in figure 4.  

 

 
 

Fig. 4. Microstructure of the friction stir welded 

specimen 

 

6. PARAMETRIC ANALYSIS USING 

    MACHINE LEARNING 

 
 Various inference algorithms, which have the 

ability to simplify a mathematical function into a 

familiar form, are termed parametric machine learning 

algorithms. The key factors attributed to these studies 

on algorithm focus on the straightforwardness and 

speed of the data. Some of the key literatures attributed 

to this investigation on ML algorithms are discussed in 

brevity in this section. 

 The study involves application of Linear 

Regression, Lasso, and Random Forest on the 

experimental data of friction stir welding. These 

algorithms are trained using experimental data sets, 

based on which they predict different combinations of 

parameters, that are subsequently validated for 

determining its accuracy.   

 In [16], the authors used the Linear Regression 

Analysis with L4 orthogonal array for deriving 

Optimum Parametric window for Weld Current (I 

amps), Gas flow rate (FR L/min) and Root Gap (G mm) 

for analysing their effect on Distortion (D) and Tensile 

Strength (TS). Correlation of current and gas flow rate 

affect the tensile strength, while that of voltage and gas 

flow rate affect the bead width. Prediction error with 

the regression analysis was found within 10% for the 

tensile strength and for the bead width.  

 In [17], the authors proposed a technique for joint 

hardness prediction based upon the thermogram 

sequence. Correlation analysis helped develop the 

interactions of temperature, welding linear energy and 

hardness. The linear regression model resulted in a 

prediction error in the joint area as low as 1.25%, while 

for HAZ it exceeded 15%. The regression model was 

trained separately for each seam hardness- temperature 

measurement data and this variation for each sample 

accounts for lower accuracy. The linear relationship 

developed for the system may be a simplified model 

may not represent the actual relationship. For a more 

accurate model, an enhanced method for assessing the 

temperature in HAZ may be required to overcome the 

existing drawbacks connected to the variable width of 

seam and HAZ for different process parameters.  

 Random Forest (RF) is a tree-based MLA, where 

both classification and regression could be conducted. 

Amperage and overall heat input guide the weld 

quality. There has been limited implementation of RF 

with high energy joining techniques. Statistical 

features representing good weld, weld with burn 

through it and lack of fusion, which are extracted from 

the sound signals, were given as an input to J48 and 

Random Forest algorithms. RF then classifies the 

welds as a good weld, or having lack of fusion or burn 

through, in the form of confusion matrix. This helps 

arrive at optimum range of weld current and heat input. 

Classification efficiency of Random Forest algorithm 

is found to be 88.69% [18].  

 In [19], the authors proposed an online 

penetration monitoring methodology for GTAW using 

a pattern-based feature extraction of weld pool images 

based on Active Appearance Model (AAM) to train a 

Random Forest (RF) supervised machine learning 

method. The RF model is then used to predict the 

penetration states and backside weld seam width, thus 

enabling online control of penetration in welding. 

Visual features were obtained from the segmented-out 

weld pool edge to be given as training and testing data 

set for the RF algorithm. RF algorithm is a high-speed 

process and is also found to have high prediction 

accuracy. Error rate of predicted penetrations, using 

root mean square error in this work was restricted to 

2.11%.  

 Friction Stir Welding (FSW) is a solid-state weld 

process and is widely used for joining similar and 

dissimilar metals, especially lightweight non-ferrous 

materials like aluminium, copper, and magnesium 

alloys. Random Forest algorithm yielded highest 

coefficient of determination value of 0.926. Optimum 

process parameters of FSW for enhancing the tensile 

strength of the target material using the Machine 

Learning approach were estimated [20].   

 In [21],  was proposed the use of Random Forest 

regression model, based on particle swarm 

optimization (PSO-RFR), to predict the welding 

parameters [22]. To improve the weld quality and to 

enhance the automation capability, an automatic 

reading and writing of the weld process parameters for 

the PLCs is designed. According to the requirements of 

this model of a cold rolling mill in a steel factory, the 

PSO-RFR algorithm is used to train the dynamic 

statistics in a parameter table from the PLC welder 

register. The training data included steel material code, 

thickness, welding current, torch speed, pressure 
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between steel plates, swap pressure, lap length and 

compensation. The model predicted the welding 

parameters based on RFR and the predicted values can 

be used in the actual weld process. Prediction 

efficiency of the model is significantly improved in 

comparison to the traditional RFR algorithm.  

 Weld quality prediction for the Resistance Spot 

Weld and for the correlation model was estimated using 

a polynomial regression model and a logistic regression 

model based on the features extracted from material 

information and welding process signals of electrode 

displacement and dynamic resistance information. 

Prediction models were used for expulsion occurrence, 

failure mode, indentation depth, and tensile shear 

strength. Backward elimination technique was used for 

model estimation using these regression models and 

prediction accuracy was above 85% for the target 

parameters. Multiple regression analysis is used to 

determine the relationship between the dependent 

variables of SMAW, namely bead width and weld bead 

hardness with welding current, arc voltage, welding 

speed, and electrode stick out. Repeated data was 

transformed and consolidated in terms of SNR which 

reflects the amount of variation in the data. SNR gives 

an idea about the control factors that may reduce the 

variation and improve the weld quality. The regression 

analysis done by the Minitab 15 version is within 95% 

confidence level and optimal parameter setting of weld 

bead width was predicted [23].  

 In [24], the authors  studied how to obtain the 

desired geometry of the back bead in CO2 arc butt 

welding. The regression model equation is obtained 

from welding process parameters through the 

correlation of the parameters to the back-bead. An 

inverse transformation is performed to this model to 

obtain the predicting equations for the process 

parameters to acquire desired back bead. The mean 

error rate proves the accuracy of the regression model 

at the analysis and verification level. The SPSS 

(Statistical Package for Social Science) was used in the 

regression analysis.  The multiple regression analysis 

is modelled into a linear equation to obtain the 

geometry of the back-bead using the welding process 

parameters. The error rate of analysis had a maximum 

value of 9.5%. The inverse transformation showed an 

error rate of under 6.5%. 

 

6.1. Methodology 
 

Data-driven models are currently being found for use 

in manufacturing processes because they can predict 

the process being analysed quickly and accurately. 

These models automatically learn the I/O dependencies 

of the process, based on previous data. 

 Supervised ML handles labels for input and 

output data and can be extended to these processes, as 

the manufacturing process is linked to ultimate goals 

and certification methods. Predictive modelling helps 

develop mechanisms that optimize the material joining 

process when there is no clear relationship between 

influencing parameters and weld properties such as 

build geometry, residual stress, and strain. This task 

uses linear regression, ridge, Random Forest, and 

Lasso modelling, respectively, to predict build 

parameters and tensile properties (Yield Strength, % 

Elongation, and UTS) and identify a hierarchy of 

process parameters that affect the tensile strength 

parameters generated during the manufacturing / 

joining process. The existing literature contains a brief 

report on the application of ML and its correlation with 

the manufacturing process. Therefore, this paper 

focuses on the application of basic linear regression, 

Lasso and Random Forest models, respectively, and 

enables better design of welding or FSW processes 

using ML technology, thus supporting manufacturing, 

or joining processes. A financially interdisciplinary 

approach is/can be added.  Data analysis using NumPy 

(Numerical Python) and Pandas, which is an essential 

package for numerical computation, is espoused. 

Besides, data visualization using seaborn and 

Matplotlib is implemented for generating informative 

results of the data in the form of plots.   

 

6.2. Machine Learning Algorithm Used  

       for this Study  
 

In this case, Supervised Learning algorithm is used to 

learn the dependent variable for tensile properties 

prediction, from a given set of predictors. These 

algorithms help you use Scikit-learn to develop 

functions that map inputs to outputs based on 

experimental datasets. The dataset obtained from the 

experiments is divided into 70% training data and the 

rest is test data that enables and validates the data 

predictions obtained using the regression models.  

 Linear Regression algorithm is used to estimate 

the actual values of the output parameters driven by the 

input parameters based on the regression line. Based on 

the available data, the key value for each input 

parameter is estimated and the optimal line between the 

independent and dependent variables is built.  

 The Ordinary Least Squares method is a 

technique for training a multi-input regression model 

in which the coefficients of the line are derived based 

on the mean squared error (MSE) and the R2 score is 

determined from the data. This is the amount that needs 

to be minimized when implementing the algorithm.  

 The Steepest Descent method is another technique 

for training a Linear Regression model that uses an 

iterative process to minimize errors in finding optimal 

coefficients. Some random values of the coefficients are 

selected and the sum of the squared errors of each input 

and output pair error is calculated. The coefficients are 

then updated to get the minimum sum of squares error. 

The regularization technique used in the algorithm 

reduces the complexity of the regression model by 

focusing on the absolute magnitude of the coefficients or 

weights assigned to the predictors.  

 The Feature Importance technique is used to 

assign weights to the influencing parameters to show 
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the relative importance of each feature in predicting the 

dependent variable. These techniques also help 

improve model performance by allowing 

dimensionality reduction. Due to the probabilistic 

nature of the scoring method, it is necessary to perform 

multiple acquisitions of coefficient values, the average 

of which is used as the feature importance score. On 

similar lines, Ridge, Lasso and Random Forest 

algorithms are sequentially applied and observations 

are made on its predictions.  

 

6.3. Data Set for Training ML Algorithm 
 

The material joining process has the constraint of 

restricted experimental data because of various 

practical limitations in conducting experiments, thus 

limiting the performance that may be obtained from 

any of the regression models. Data sets obtained for 

three different welding processes are used in this work. 

Data sets contain trials where the variation of input 

parameters is either continuous or discrete. In some 

cases, the step variations of the input parameters are 

non-uniform, and thus restricts the type of study which 

can be performed using the regression models and 

prescribes for an alternate and appropriate algorithm.   

 The execution of these algorithms involves the 

calling of seaborn, scikit and panda libraries 

respectively and implementing them in the Jupiter 

notebook.  This entire process involves data collection, 

preliminary data analysis using the functions called 

from the panda and seaborn libraries, respectively. This 

is followed by data pre-processing which involves 

cleaning of data and removing non-orderly datawhich 

does not fit into a model. These pre-processed data are 

then implemented by calling the Scikit libraries that 

have the algorithm implementation procedures. 

Subsequently the models are trained with 80% of the 

available data and the rest of 20% of that is used for 

testing and validating purposes. Overfitting issues are 

sorted out using the regularization process and 

eventually R2 is calculated which reveals the accuracy 

and, indirectly, the error percentage.  

 

7. RESULTS AND DISCUSSIONS 

 
The tensile properties as recorded from experiments 

are shown in table 2.  It consists of UTS, YS and % 

elongation details for varying combinations of process 

parameters, which entail transverse speed and tool 

rotation speed.  

 

Table 2. Tensile properties of samples with varying transverse speed and tool rotational speed 

 

No. 
Transverse 

speed [mm/min] 

Tool rotational 

speed [rpm] 

UTS 

[MPa] 

YS  

[MPa] 
[%] 

1 45 540 104.4 85.5 20.04 

2 54 540 88.2 80.1 13.80 

3 63 540 93.6 81.9 11.38 

4 45 720 85.5 73.8 17.61 

5 54 720 95.4 82.8 15.53 

6 63 720 100.8 84.6 14.61 

7 45 900 76.5 73.8 19.11 

8 54 900 87.3 86.4 16.42 

9 63 900 111.5 85.5 14.90 

10 54 900 124.2 116.1 6.21 

11 54 900 127.8 117 6.57 

12 81 720 121.5 112.5 3.78 

13 81 1080 133.2 122.4 5.22 

14 27 1080 178.2 160.2 6.48 

15 81 720 123.3 117 4.5 

16 54 900 137.7 130.7 5.58 

17 54 900 143.1 131.4 6.12 

18 54 720 123.3 117 4.5 

19 27 720 117 109.8 4.32 

20 81 900 130.5 109.8 4.05 

21 81 1080 171.9 138.6 5.67 

22 72 1080 171 143.1 5.85 

23 27 1080 173.7 135.9 5.76 

24 27 720 142.2 127.8 4.05 

25 54 900 146.7 135.9 4.95 

26 27 900 158.4 146.7 5.76 

27 54 900 171 143.1 5.85 

28 54 900 130.5 121.5 6.57 

29 54 900 126 117 6.3 
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Similarly, tables 4, 5 and 6 shows the segregated 

values of tensile properties that individually account 

for UTS, YS and % elongation and are applied 

specifically to all the algorithms to understand the 

prediction capability of the algorithms. 

Initially, ML algorithms are used for the analysis 

of only the UTS, as shown in table 4. The algorithms 

are executed using Jupiter note. Seaborn library is used 

for the visualization of the data in the form of plots. 

These libraries will provide the corresponding function 

for the data analysis. Figure 5 shows the parametric 

interdependencies and the heat map. Figure 6 shows 

the influence percentage of transverse speed and tool 

rotation speed. Tool rotation speed is the higher 

governing factor when compared to transverse speed.  

This is followed by data analysis and implementation 

of different algorithms. Figures 7 top 10 clearly 

illustrate the results together with predictions for 

different algorithms, namely Random Forest, Linear 

Regression, Lasso and Ridge.  Lasso and Ridge work 

based on Linear Regression. However, it is only used 

for regularization.   

 Table 3 presents some observations with respect 

to the data frame/table such as: 

• Count: Count number of non-NA/null 

observations. 

• Meaning: Meaning of the values. 

• Std: Standard deviation of the observations. 

• Min: Minimum of the values in the object. 

• Max: Maximum of the values in the object. 

• 25% - The 25% percentile*. 

• 50% - The 50% percentile*. 

• 75% - The 75% percentile*. 

*Percentile meaning: how many of the values are 

less than the given percentile.  

 

Table 3. Statistical values for data understanding 

obtained with panda library function 

 

 

Transverse 

speed 

[mm/min] 

Total 

rotation 

speed [rpm] 

UTS/n 

[MPa] 

Transverse 

speed 

[mm/min] 

1.000000 0.055651 -0.091137 

Total 

rotation 

speed [rpm] 

0.055651 1.000000 0,678406 

% -0.091137 0,678406 1.000000 

 

Table 4 represents the pairwise correlation of all 

the columns in the data which gives information on 

parametric interdependencies.  

 The pairs plot (Fig. 5) is built on two basic 

figures, the histogram and the scatter plot. The 

histogram on the diagonal allows us to see the 

distribution of a single variable, while the scatter plots 

on the upper and lower triangles show the relationship 

(or lack thereof) between two variables. For example, 

the left-most plot in the second row shows the scatter 

plot of tool rotational speed versus transverse speed. 

These scatter plots clearly demonstrate that there is no 

multi-collinearity between the input features. If there 

were any evidence for multi-collinearity between these 

two input functions, then one of these must be 

discarded during the analysis. Figure 5 also represents 

the heat map of the correlation matrix between various 

columns in the data frame/table.  The colour grading 

represents the correlation between various features. 

The correlation value increases if the colour tends 

towards green and the value decreases if the colour 

tends towards red. 

 The graph from figure 6 represents the feature 

importance, which signifies the columns/features that 

show more influence on ML Model getting developed 

for prediction.  

 

Table 4. Pairwise correlation of all the columns in the 

data frame 

 

 Transverse 

speed 

[mm/min] 

Total 

rotation 

speed [rpm] 

UTS\n 

[MPa] 

count 29.000000 29.000000 29.000000 

Mean 54.620690 844.137931 127.396552 

Std 16.996667 160.301440 29.153001 

Min 27.000000 540.000000 76.500000 

25% 45.000000 720.000000 104.400000 

50% 54.000000 900.000000 126.000000 

75% 63.000000 900.000000 143.100000 

Max 81.000000 1080.000000 178.200000 

 

 

 
 

Fig. 5. Parametric interdependency plots and heat map 
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Fig. 6. Influence of rotational speed and traverse speed 

 

7.1. Random Forest Algorithm based UTS  

       Prediction 

 
Random Forest Algorithm uses the ensemble technique 

to select the best hyper parameters for training the 

model.  The graph shown below represents the 

distribution plot which usually represents a univariate 

analysis if you are using one parameter for the analysis. 

The distribution clearly depicts a non-uniform and 

inadequate fit.  The distribution plot (Fig. 7) represents 

the prediction in the form of bar graphs and continuous 

lines, where the continuous line represents the KDE 

(Kernel Density estimation). The Bar Graph 

Represents the PDF (Probability Density Function) 

 Figure 7 also represents a scatter plot for the 

predicted value of UTS when Random Forest 

Algorithm is used.  The above parameters represent the 

loss functions, the values of which have to be further 

minimized to get better prediction and accuracy. The 

accuracy achieved by the model is not appreciable and 

hence this algorithm is not appropriate. Therefore, the 

study attempts to examine the accuracy using Linear 

Regression ML Algorithm.   

 

 
 

Fig. 7. Random Forest-based predictions 

 

7.2. Linear Regression Algorithm Based UTS 

       Prediction 
 

Linear Regression typically creates a high bias and low 

variance mode. This bias is a kind of error that is 

experienced during the training. On adding any number 

of data into the available dataset, the line will have nil 

or negligible adjustment for which there is a low 

variance system. This model, applying Linear 

Regression Algorithm process, the parameters that 

includes intercept and coefficients. Regression analysis 

is applied, assuming that a relation has to be identified 

between y (output) and x (input).  The mean of the 

residual is assumed to be zero. Furthermore, the error 

terms are not expected to be correlated. Besides, x and 

error are not to have any correlation and the error term 

must showcase a constant variance while also showing 

a normal distribution.  The summation of the residual 

value yields a minimum value or moves to zero, a fact 

which is illustrated sequentially in equation 1-3. 

 

∑ 𝑟2 =𝑚
𝑖=1  ∑ (𝑦 − (𝑚𝑥 + 𝑐))

2𝑚
𝑖=1     (1) 

 

∑ 𝑟2 =𝑚
𝑖=1 ∑ (𝑦2 + (𝑚𝑥 + 𝑐)2 + 2𝑦(𝑚𝑥 + 𝑐))𝑚

𝑖=1  (2) 

 
∑ 𝑟2 =𝑚
𝑖=1 ∑ (𝑦2 +𝑚2𝑥2 + 𝑐2 + 2𝑚𝑥(−2𝑦𝑚𝑥 −𝑚

𝑖=1

                   −2𝑐))       (3) 

 

The residuals represent the errors. The objective 

is to find the derivative of R, with respect to m and c, 

of the straight line, where m is the gradient and c is the 

intercept coefficient. The equation representing the 

objective of this regression analysis is presented in 

equation 4.  
𝑑𝑅
𝑑𝑚
→  0

=
𝑑𝑅
𝑑𝑐
→ 0
         (4) 

where m new and c new are determined in the equations 5 

– 6, respectively 

 

𝑚𝑛𝑒𝑤 = 𝑚𝑜𝑙𝑑 − 𝜂
1

𝑚
(
∑ (𝑦−𝑦 ̂)𝑚
𝑖=1

𝑟
)   (5) 

 

𝑐𝑛𝑒𝑤 = 𝑐𝑜𝑙𝑑 − 𝜂
1

𝑚
(
∑ (𝑦−𝑦 ̂)𝑚
𝑖=1

𝑟
)     (6) 

 

These equations may be further deduced to equations 

7-8 in terms of learning rate. 

 

𝑚𝑛𝑒𝑤 = 𝑚𝑜𝑙𝑑 − 𝜂∇𝐸𝑚      (7) 

 

𝑐𝑛𝑒𝑤 = 𝑐𝑜𝑙𝑑 − 𝜂∇𝐸𝑐      (8) 

 

 Equations 7 and 8 provide the best values of m 

and c, where residuals are going to be either minimum 

or zero, and wherein 𝜂 is the learning rate (hyper 

parameters). It tries to control the changes. According 

to figure 8 (univariate analysis with Linear Regression 

Algorithm) it may be observed that PDF and KDE are 

improved in compared with that of Random Forest 

Algorithm prediction (Fig 7). The scatter plot (Fig. 8) 

represents the output predicted results using Linear 

Regression Algorithm. The distribution plots show 

higher points within the curve, indicating a better 

prediction. R2 is calculated to determine the accuracy 

matrix and can be considered one of the assumptions 

for feature selection. R2 is given by the equation (9).  
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Fig. 8. Linear Regression-based algorithmic 

predictions 

 

𝑅2 = (1 −
𝑅𝑠𝑠

𝑇𝑠𝑠
)       (9) 

 

where RSS is the residual summation of square;  

           TSS – the total summation of squares. 

 

 Initially, using the scikit learn library, a statistical 

model is built, which follows a statistical approach. 

Secondly, OLS (Ordinary Least Square) model is 

called. Although the R2 value increases, it may not be 

reliable, as it does not necessarily mean that this model 

is accurate, as it can also indicate overfitting. Hence, 

an adjusted R2 (equation 10) that accounts for number 

of samples and number of features is calculated. It is 

expected to yield much more reliable results.  

 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = 1 − (
(1−𝑅2)(𝑁−1)

𝑁−𝑝−1
)  (10) 

 

 The R2 predicted through this result is 81.6% 

accuracy. Adjusted R2 yields 87.6% accuracy. Though 

there is considerable improvement of the results with 

respect to all the features compared results attained from 

the Random Forest, it may further be improved by 

regularization of the Linear Regression Algorithm by 

employing Lasso and Ridge Algorithms which also 

fundamentally work on the Linear Regression concept. 

The loss functions parameters are higher than Random 

Forest Algorithm based predictions and require more 

minimization. Controlling the error term will facilitate 

generalization of the model in the best possible way and 

is called the regularization. Two of the prominent 

techniques used to regularize are Lasso (Least Absolute 

Shrinkage and Selection Operator) also known as L1.  

 

7.3. Lasso Algorithm based UTS Prediction 
 

This algorithm builds a model that explains the 

variance into the data set. The regularization is given 

by the equations 11-12.  

𝐿1 = 𝑅𝑠𝑠 + 𝜆 ∑ |𝛽𝑗|
𝑁
𝑗=1       (11) 

 

where, 𝑅𝑠𝑠 =  (𝑌 − �̂�)2     (12) 

 

 𝜆 is the shrinkage factor; 

 𝛽 is m. 

 

 

 
 

Fig. 9. Lasso Based Algorithmic Prediction 

 

 From figure 9 (univariate analysis using lasso 

algorithm) it may be observed that PDF and KDE have 

improved considerably as compared to that of Linear 

Regression Algorithm and Random Forest Algorithm-

based predictions, as shown in figures 8 and 7, 

respectively.  

 The scatter plot (Fig. 9) represents the output 

predicted results using Lasso Algorithm. Though there 

is an improvement in the results with respect to all the 

features compared to the results obtained from the 

Random Forest and Linear Regression, it is negligible 

and may further be improved by using other 

regularization ML Algorithms. The loss functions 

parameters are lesser than Linear Regression 

Algorithm and Random Forest Algorithm based 

predictions and require more minimization. 

 

7.4 Yield Strength Prediction based on  

      ML Algorithms 
 

Secondly, ML algorithms are employed for the 

analysis of only the YS and uses Table 5 for this 

analysis. Figure 11 shows the parametric 

interdependencies and the heat map. Figure 12 

shows/depicts the influence percentage of transverse 

speed and tool rotation speed. Figure 13 to 16 clearly 

illustrates the results along with predictions for 

different algorithms, namely Random Forest, Linear 

Regression, Lasso and Ridge. Ridge Mean Line covers 

a major part of the plot, indicating its higher efficacy 

and being followed by Lasso.  
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Table 5. Yield Strength Analysis 

 

No. 

Transverse 

speed 

[mm/min] 

Total 

rotational 

speed [rpm] 

YS 

[MPa] 

1 45 540 85.5 

2 54 540 80.1 

3 63 540 81.9 

4 45 720 73.8 

5 54 720 82.8 

6 63 720 84.6 

7 45 900 73.8 

8 54 900 86.4 

9 63 900 85.5 

10 54 900 116.1 

11 54 900 117 

12 81 720 112.5 

13 81 1080 122.4 

14 27 1080 160.2 

15 81 720 117 

16 54 900 130.7 

17 54 900 131.4 

18 54 720 117 

19 27 720 109.8 

20 81 900 109.8 

21 81 1080 138.6 

22 72 1080 143.1 

23 27 1080 135.9 

24 27 720 127.8 

25 54 900 135.9 

26 27 900 146.7 

27 54 900 143.1 

28 54 900 121.5 

29 54 900 117 

 

 Table 6 represents some observations with 

respect to the data frame/table  such as:  

• Count: Count number of non-NA/null 

observations. 

• Mean: Mean of the values. 

• Std: Standard deviation of the observations. 

• Min: Minimum of the values in the object. 

• Max: Maximum of the values in the object. 

• 25% - The 25% percentile*. 

• 50% - The 50% percentile*. 

• 75% - The 75% percentile*. 

*Percentile meaning: how many of the values are 

less than the given percentile.  

 

Table 6. Statistical values for data understanding 

obtained with panda library function 

 

 

Transverse 

speed 

[mm/min] 

Total 

rotation 

speed [rpm] 

UTS\n 

[MPa] 

count 29.000000 29.000000 29.000000 

Mean 54.620690 844.137931 113.368966 

Std 16.996667 160.301440 24.680922 

Min 27.000000 540.000000 73.800000 

25% 45.000000 720.000000 85.500000 

50% 54.000000 900.000000 117.000000 

75% 63.000000 900.000000 131.400000 

Max 81.000000 1080.000000 160.200000 

 

 Table 7 represents the pairwise correlation of all 

the columns in the data frame/table. 

 

Table 7. Pairwise correlation of all the columns in the 

data frame 

 

 

Transverse 

speed 

[mm/min] 

Total 

rotation 

speed [rpm] 

UTS/n 

[MPa] 

Transverse 

speed 

[mm/min] 

1.000000 0.055651 0.124082 

Total 

rotation 

speed [rpm] 

0.055651 1.000000 0.650302 

% -0.124082 0.650302 1.000000 

 

 
 

Fig. 10. Parametric interdependency and heat map 

 

 Figure 10 also represents the heat map of the 

correlation matrix between various columns in the data 

frame/table. The colour grading represents the 

correlation between various features. The correlation 

value increases if the colour tends towards green, and 

the value decreases if the colour tends towards red.  

 

 
 

Fig. 11. Influence of traverse speed and tool rotational 

speed 
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The pairs plot (Fig. 11) is built on two basic 

figures, the histogram and the scatter plot. The 

histogram on the diagonal allows us to see the 

distribution of a single variable, while the scatter plots 

on the upper and lower triangles show the relationship 

(or lack thereof) between two variables. For example, 

the left-most plot in the second row shows the scatter 

plot of the tool rotational speed versus transverse 

speed. 

 The graph from figure 11 represents the feature 

importance, which signifies the columns/features 

which show more influence on the ML Model, getting 

developed for prediction. Tool rotation speed is a 

higher governing factor when/if compared to 

transverse speed.  

 

7.5. Random Forest Algorithm  

       based YS Prediction 
 

Random Forest Algorithm uses ensemble technique to 

select the best hyper parameters for training the model.  

The graph shown below represents the dist. plot which 

usually represents a univariate analysis if you are using 

one parameter for the analysis.  

 The distribution plot from figure 13 represents 

the prediction in the form of bar graphs and continuous 

lines, where the continuous line represents the KDE 

(Kernel Density Estimation). The Bar Graph 

Represents the PDF (Probability Density Function). 

 

 

 
 

 
 

Fig. 12. Random forest (Decision Making Tree) 

algorithm-based prediction 

 Figure 12 also represents a scatter plot for 

predicted the value of YS when Random Forest 

Algorithm is used. The above parameters represent the 

loss functions, the values of which have to be further to 

get better a prediction and accuracy. The points within 

the curve are considerably fewer and hence the 

prediction is less accurate.  

 

7.6 Linear Regression Algorithm based YS 

      Prediction 
 

From figure 13 (univariate analysis with Linear 

Regression Algorithm) it may be observed that PDF 

and KDE are improved, when compared to that of 

Random Forest Algorithm prediction (Fig. 13). The 

scatter plot (Fig. 14) represents the output predicted 

results using Linear Regression algorithm. Although 

there is considerable improvement of the results with 

respect to all the features that are compared with the 

results obtained from the Random Forest, it may be 

further improved by other lasso and ridge Algorithms 

through regularization. The loss functions parameters 

are higher than Random Forest Algorithm based 

predictions and require more minimization. The bigger 

number of points under the curve indicate the better 

prediction of the model compared to that of the 

Random Forest.  

 The R2 predicted through this result is of 83.4% 

accuracy, and Adjusted R2 yields 84.7% accuracy. The 

accuracy of R2 is 83.4 and adjusted R2 is 84.7%, which 

can be further improved with more training of the data.  

 

 

 
 

Fig. 13. Linear Regression Algorithm-based 

prediction 

 

7.7. Lasso Algorithm based YS Prediction 
 

From figure 14 (univariate analysis using Lasso 

algorithm) it may be observed that PDF and KDE have 

improved considerably when compared to that of 

Linear Regression Algorithm and Random Forest 
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algorithm-based predictions, as shown in figures 13 

and 12, respectively.  

 

 
 

 
 

Fig. 14. Lasso Regression Algorithm Based Prediction 

 

 The scatter plot (Fig. 14) represents the output 

predicted results using Lasso algorithm. Although 

there is considerable improvement in the results with 

respect to all the features compared to the results 

attained from the Random Forest and Linear 

Regression, it may further be improved by using other 

ML Algorithms. The bigger number of points under the 

curve indicate the better prediction of the model 

compared to that of Random Forest and Linear 

Regression. The loss functions parameters are lesser 

than Linear Regression Algorithm and Random Forest 

Algorithm based predictions and require more 

minimization. 

 

7.8. % Elongation Prediction based on  

       ML Algorithms 
 

Finally, ML algorithms are employed for the analysis 

of only the % elongation and uses Table 8 for this 

analysis. Figure 17 shows the parametric 

interdependencies and the heat map. Figure 18 depicts 

the influence percentage of the transverse speed and the 

tool rotation speed. Figures 19 to 22 clearly illustrate 

the results together with predictions for different 

algorithms, namely Random Forest, Linear 

Regression, Lasso and Ridge, respectively. Ridge 

mean line covers a major part of the plot, indicating its 

higher efficacy and being followed by Lasso.  

 

Table 8. Percentage Elongation Analysis 

 

No. 

Transverse 

Speed 

[mm/min] 

Tool 

rotational 

speed [rpm] 

Elongation 

[%]  

1 45 540 20.0403 

2 54 540 13.8006 

No. 

Transverse 

Speed 

[mm/min] 

Tool 

rotational 

speed [rpm] 

Elongation 

[%]  

3 63 540 11.3805 

4 45 720 17.6121 

5 54 720 15.5322 

6 63 720 14.6115 

7 45 900 19.1088 

8 54 900 16.4205 

9 63 900 14.9022 

10 54 900 6.21 

11 54 900 6.57 

12 81 720 3.78 

13 81 1080 5.22 

14 27 1080 6.48 

15 81 720 4.5 

16 54 900 5.58 

17 54 900 6.12 

18 54 720 4.5 

19 27 720 4.32 

20 81 900 4.05 

21 81 1080 5.67 

22 72 1080 5.85 

23 27 1080 5.76 

24 27 720 4.05 

25 54 900 4.95 

26 27 900 5.76 

27 54 900 5.85 

28 54 900 6.57 

29 54 900 6.3 

 Table 9 represents some observation with respect 

to the data frame/table such as: 

•  Count: Count number of non-NA/null 

observations. 

•  Mean: Mean of the values. 

•  Std: Standard deviation of the observations. 

•  Min: Minimum of the values in the object. 

•  Max: Maximum of the values in the object. 

•  25% - The 25% percentile*. 

•  50% - The 50% percentile*. 

•  75% - The 75% percentile*. 

*Percentile meaning: how many of the values are 

less than the given percentile.  

 

Table 9.  Observation with respect to the data frame. 

 

 

Transverse 

speed 

[mm/min] 

Total 

rotation 

speed [rpm] 

UTS\n 

[MPa] 

count 29.000000 29.000000 29.000000 

Mean 54.620690 844.137931 8.672369 

Std 16.996667 160.301440 5.218111 

Min 27.000000 540.000000 3.780000 

25% 45.000000 720.000000 5.220000 

50% 54.000000 900.000000 6.120000 

75% 63.000000 900.000000 13.800600 

Max 81.000000 1080.000000 20.040300 
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 Table 10 represents the pairwise correlation of all 

the columns in the data frame/table which provides an 

idea on the interdependency of parameters. 

 

Table 10. Pairwise correlation of all the columns in 

the data frame 

 

 Transvers

e speed 

[mm/min] 

Total 

rotation 

speed [rpm] 

% 

Transverse 

speed 

[mm/min] 

1.000000 0.055651 -0.112210 

Total rotation 

speed [rpm] 
0.055651 1.000000 -0.402077 

% -0.112210 -0.402077 1.000000 

 

The pairs plot from figure 15 is built on two basic 

figures, the histogram and the scatter plot. The 

histogram on the diagonal allows us to see the 

distribution of a single variable, while the scatter plots 

on the upper and lower triangles show the relationship 

(or lack thereof) between two variables. For example, 

the left-most plot in the second row shows the scatter 

plot of tool rotational speed versus transverse speed. 

 Figure 15 also represents the heat map of the 

correlation matrix between various columns in the data 

frame/table. The colour grading represents the 

correlation between various features. The correlation 

value increases if the colour tends towards green and 

the value decreases if the colour tends towards red.   

 

 
 

Fig. 15. Parametric Interdependencies and Heat Map 

 

 Graph from figure 16 represents the feature 

importance, which signifies the columns/features 

which shows more influence on the ML Model getting 

developed for prediction. Transverse speed governs the 

% elongation more than the tool rotational speed.  

 
 

Fig. 16. Influence of traverse speed and tool rotation 

speed 

 

7.9. Random Forest Algorithm based  

       Elongation prediction 
 

Random Forest Algorithm uses ensemble technique to 

select the best hyper parameters for training the model.  

The graph shown below represents the dist. plot which 

usually represents a univariate analysis if you are using 

one parameter for the analysis. The distribution plot 

from figure 16 represents the prediction in the form of 

bar graphs and continuous lines, where the continuous 

line represents the KDE (Kernel Density Estimation). 

The Bar Graph Represents the PDF (Probability 

Density Function). Figure 16 also represents a scatter 

plot for the predicted value of % Elongation when 

Random Forest Algorithm is used.  The above 

parameters represent the loss functions, the values of 

which have to be minimized further to get a better 

prediction and accuracy. Random Forest Line partially 

covers the plot and the prediction is not satisfactory.  

 

 

 

 
 

Fig. 16. Random forest (Decision tree) algorithm-

based prediction 
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7.10. Linear Regression Algorithm based  

         Elongation Prediction 
 

From figure 17 (univariate analysis with linear 

regression algorithm) it may be observed that PDF and 

KDE are improved when compared to that of the 

Random Forest Algorithm prediction (Fig. 18). The 

scatter plot (Fig. 17) represents the output predicted 

results using Linear Regression Algorithm. Although 

there is considerable improvement in the results with 

respect to all the features that are compared to the 

results obtained from the Random Forest, it may 

further be improved by other ML Algorithms. The loss 

functions parameters are higher than Random Forest 

Algorithm based predictions and requires more 

minimization.  

 The R2 predicted through this result is of 89.1% 

accuracy. Adjusted R2 yields 89.3% accuracy. The 

accuracy of R2 is 89.1% and of the adjusted R2 is 89.3 

which can be further improved with more training of 

the data.  However, in this case, there is no significant 

improvement in adjusted R2. Linear regression line 

partially covers the plot, and the prediction is not 

satisfactory, but better than that of the Random Forest.  

 

 
 

Fig 17. Linear Regression Algorithm Based 

Prediction 

 

7.11. Lasso Algorithm Based YS prediction 
 

From figure 18 (univariate analysis using lasso 

algorithm) it may be observed that PDF and KDE have 

improved considerably when compared to those of  the 

Linear Regression Algorithm and Random Forest 

Algorithm-based predictions as shown in fig’s 16 and 

17, respectively.  

 The scatter plot (Fig. 18) represents the output 

predicted results using Lasso Algorithm. Although 

there is considerable improvement in the results with 

respect to all the features that are compared to the 

results obtained from the Random Forest and Linear 

Regression, it may further be improved by using other 

Algorithms that use regularizations. The loss functions 

parameters are lesser than Linear Regression 

Algorithm and Random Forest Algorithm based 

predictions and require more minimization. Lasso line 

covers a major portion of the plot and the prediction is 

more satisfactory and better than that of the Random 

Forest and Linear Regression.  

 

 

 
 

Fig. 18. Lasso Regression Algorithm based prediction 

 

8. CONCLUSIONS 

 
This study investigates the feasibility of the FSW 

process for the joining of 6061AL mmc’s reinforced 

with SiC/B4C/Mg. The following conclusions are 

drawn from this study: 
1. Tensile strength is directly proportional to the wt 

percentage of SiC and inversely proportional to the 

wt percentage B4C. Higher wt percentages of SiC 

resulted in more Al-SiC particle precipitates during 

the solidification of the homogeneous solution, 

resulting in the maximum composite strength.  

2. % Elongation is directly proportional to the wt 

percentage of SiC and inversely proportional to the 

wt percentage B4C  

3. The FSW process leads to homogenous dispersion 

of these particles at the joint, due to friction and 

grinding action.  

4. SEM micrographs with EDAX analysis show Al 

and reinforcing particle peaks. Small peaks of Fe 

were seen, indicating that the reinforcing particles 

abraded the surface. The particles are also evenly 

dispersed, and there is no wear on the worn surface 

at greater weights.  

5.  As observed from the radiography test, most of the 

welded specimens are free from flaws and 

discontinuities.  

6. Si and Al phase grains of varying sizes are 

dispersed in the small gaps between B4C particles. 

The Al phase controls the solid solubility of various 

reinforcing particles as observed from the 

micrographs. 
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7. Data visualization and analysis using panda and 

seaborn libraries, while implementing in Jupiter 

notebook, reveals that the tool rotation speed has 

higher influence on UTS and YS, and % 

Elongation is highly influenced by the transverse 

speed. Linear Regression Algorithm-based model 

yields improved results. R2 value gets considerably 

improved when adjusted R2 is calculated for the 

case of UTS and YS. However, for % Elongation, 

the improvement is negligible. Lasso facilitates 

regularization and, also improves the predictions 

when compared to Linear Regression. However, 

for all the three parameters Lasso Algorithm-based 

model provides the best fit. 
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