
THE ANNALS OF “DUN ĂREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2018, VOL. 41, NO.2, ISSN 2344-4738, ISSN-L 1221-454X

ELECTROTECHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS
__

OPTIMAL CONTROL WITH BILOCAL CONSTRAINTS USING SIMU LATED
ANNEALING ALGORITHM

Viorel MINZU

Department of Automation and Electrical Engineering,“Dunarea de Jos” University of
Galati, Romania

e-mail:Viorel.Minzu@ugal.ro

Abstract: This paper is a study on implementing Simulated Annealing (SA) to solve an
Optimal Control Problem (OCP) with bilocal constraints related to state variables. The
contribution is an implementation of Simulated Annealing Algorithm (SAA) which is
enriched with some practical aspects. The presentation of these aspects is made through
the agency of two case studies.

Keywords: optimal control problem, metaheuristic, Simulated Annealing, state variable,
bilocal constraints.

1. INTRODUCTION

There is an important interest in solving an Optimal
Control Problem (OCP) by metaheuristics, because
of their large computation complexity. Many
practical aspects concerning the implementation of
such an algorithm can be found in (Talbi, 2009) and
(Valadi 2014). In many practical applications, a
dynamic system is modeled by a set of ordinary
differential and algebraic equations, associated with
a set of constraints.

This work is a study on implementing Simulated
Annealing (SA) to solve OCPs with bilocal
constraints related to state variables. Hence the
implemented algorithm used in this work is
Simulated Annealing Algorithm (SAA) that is a
single solution metaheuristic. This means that the
algorithm proposes a single solution at each step.
The series of these solutions is a stochastic process,
which under certain conditions is a Markov chain
(Kirkpatrick, 1983).

The first contribution of this paper is an
implementation of Simulated Annealing Algorithm
which is devoted to OCPs. A classical version of
SAA, which is a well-known algorithm, is
described in (Faber, 2005). In this paper the SAA is
enriched with some practical solutions related to the
following aspects:

� the recognition of the de facto existence of
the algorithm's convergence;

� the encoding of the solution used in the
searching process;

� the bilocal constrains treatment when the
final state is also set from the beginning;

� the treatment of the constraint involving
free final time.

The presentation of these aspects is made through
the agency of two case studies that generate OCP's
with bilocal constrains. The both of them have not
an industrial relevance, but they are useful to

THE ANNALS OF “DUN ĂREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2018, VOL. 41, NO. 2, ISSN 2344-4738, ISSN-L 1221-454X

__

 6

understand easily how to implement the special
parts within SAA. Moreover, the example presented
in section 3 was the subject of a paper where that
OCP was solved with a genetic algorithm.
Therefore, we know a priori a very good solution of
this one. The second problem described in section 4
admits a known theoretical solution expressed
analytically. Hence, the quasi-optimal solutions
found out by SAA can be compared with the known
solutions. In this way, it is possible to assess the
efficiency of SAA in solving the OCP's.

2. DETAILS CONCERNING SAA

In order to ensure the coherence of our work's
presentation, the annex A gives the description of a
classical implementation of SAA and the notations
used in the sequel.

2.1. Integration of the convergence test

As a new element, the pseudo-code description
contains a convergence testing bloc aiming to
apprehend the situation when the algorithm has
converged to the optimal solution of the problem. In
this work, this bloc is implemented as below:

(1) if () () 1
1* ε≤− +k

cc xJxJ then 1c +← cjj ;

else 0←cj ;
(2) if ()εNjc ≥ & ()2ε<AT then converg ← 1;

where jc is a variable initialized to zero, used to
count the number of steps without improvement of
the objective function, ε1, ε2 and Nε are constant
values set at initialization. If the distance between
two values of the objective function is less than ε1,
SAA considers that the current solution was not
improved. If TA < ε2, the cooling of TA is sufficient
to assert that SAA is in its final state. The value Nε
is the maximum accepted number of steps without
improvement of the objective function. The action
(2) will set the variable converg to 1 at the end of
SAA, when TA is very low and jc exceeds Nε. In our
implementation, this means that SAA has
converged and the iteration may stop. At the
initialization of the algorithm, converg is set to 0.

In our proposition, SAA counts the calls of the
objective function and stores the value in the
variable Neval. At the end of the running of SAA, its
value will be a measure of the algorithm's
computational complexity for solving the given
problem. During the running of SAA, the value of
Neval is tested repeatedly. If this one exceeds a
maximum number of calls, which is parameter of
the algorithm, the variable converg will take the
value 2 that codifies the situation when the
algorithm is not convergent.

Taking into account the elements presented before,
the three repetitive structures described in annex A
employ as final test condition the following three
conditions respectively:

 condition 1: (k ≤ kmax) and (converg =0);

 condition 2: (l ≤ lmax) and (converg = 0);

 condition 3: (converg = 0);

2.2. Implementation of step length adjustment

A very important mechanism for the dynamic of
SAA is the adjustment of the step length across the
iterative process. In this work, it was used a tuning
method that is classical method presented in
(Corana, 1987) slightly modified. A key element of
this method is the ratio

(3)
eval

accept

N

N
a = ,

where Naccept is the number of steps whose new
candidate solution was accepted as current solution,
even if it is worse than the current one. The strategy
of this method is to keep the value of a as close as
possible to 0.5 over the running of the algorithm. If
a is too big, then too many steps that are not
necessary are accepted and, as a consequence, the
computation time is too big. Conversely, if a is too
small then SAA fails in a local minimum.

The updating of the search step length used in this
work is practically that one presented in (Corana,
1987), according to the next equation:

(4)














<






 −+

≤≤

>






 −+

=+

40
40

40
1

6040

60
40

60
1

1

1

.a if
.

a.
dx

.a. if dx

.a if
.

.a
dx

dx
-

l

l

l

l

Hence the updating is determined by the function
(4) depicted in Fig.2.

(5)
l

lD

dx

dx
af

1
)(

+
=

THE ANNALS OF “DUN ĂREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2018, VOL. 41, NO. 2, ISSN 2344-4738, ISSN-L 1221-454X

__

 7

Fig.1. Updating the step length

There is also a relation between dxl and the
temperature TA. When TA has a high level, solutions
with bigger value of the objective function (in the
case of minimization) may be accepted and a
greater step length may be adopted in order to cover
a larger search zone. That is why the initial value of
TA is big enough to allow that practically all the
moves are accepted by Metropolis rule. In this way,
at least potentially the algorithm can find out the
optimal solution x*. As fast as TA decreases, the
step length has to be reduced such that degraded
values of the objective function would be accepted
with a ratio a smaller and smaller.

2.3. Implementation of cooling scheme

As it results from fig. 1, for each m the temperature
m
AT has a constant value for lmax adjustments of the

step length. In this way a homogeneous Markov
chain in generated. When this algorithm goes well,
the optimal value xc

* corresponding to the current

temperature m
AT is found out within the lmax

adjustments. After that the iterative process (the
repetitive structures after k and l) starts again from

xc
* with the new adjusted temperature 1+m

AT . At the

end of the cooling scheme, the optimal solution is
found out, i.e. xc

= x.

One of the most popular cooling schemes that could
lead to the optimum solution determination is
described in (Kirkpatrick, 1982). This one is
described by the following geometric series:

(6) m
A

m
A TbT ⋅=+1 , 10 ≤≤ b .

With this cooling scheme the convergence is
guaranteed and the number of objective function
evaluations is acceptable. Good results are obtained
for 99.05.0 ≤≤ b . A global optimum may be
reached when 1→b , i.e. the cooling is very slow. If
b has a small value, SAA may stop very fast
without finding the global optimum.

3. BILOCAL OPTIMAL CONTROL RELATED
TO STATE AND FREE FINAL TIME

This is a special optimal control problem (Minzu,
2017) where the dynamic process has a state
representation and the initial and final states are
imposed from the beginning, defining thus the
bilocal character of the problem. The OCP is also
completed by some equality and inequality
constraints. The employment of SAA to solve this
kind of problems is illustrated by two examples.

3.1. Case study

As a first case study, we take in consideration un
example of OCP described in (Yamashita, 1997),
where the authors have used a genetic algorithm to
solve this problem. The process is modeled by
nonlinear state equations with 2 state variables, x1
and x2, and a control input u1:

(7)







⋅−=

⋅−+−=

112
.

1211
.

)1(

)1(5

uxx

uxxx

The objective function and the performance index
are given hereafter:

(8) ∫ −−= ft

f
dtux

t
J

0 11)43(
1

, J
u1

min .

The value tf is the final time considered free
(unknown) in this problem. The initial time is zero.
The other constraints that complete the OCP are:

-bilocal constraints:

 Tx .]0 .,1[)0(= ;

 T
ftx 3.0] ,5.0[)(= ;

-bound constraints:

 100 1 ≤≤ u

-final time

 tf: free

3.2. Encoding of the optimal solution

The optimal solutions are searched in a specific
space using a time horizon that is [0, tf]. The time
discretization yields a sequence of n time moments,
usually equidistant (Minzu, 2017), which cover the
time horizon:

(9) () fn
T

n tttttt == with;,,, 21 L

When the final time is free, the SAA search its
value by applying random variations at every step
of the SAA, like for any other unknown component
of the solution. Usually the value of n is a constant,

f(a)

THE ANNALS OF “DUN ĂREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2018, VOL. 41, NO. 2, ISSN 2344-4738, ISSN-L 1221-454X

__

 8

set by the algorithm at initialization. Because the
value of tf=tn changes during the execution, the
values of the other time moments also changes
accordingly. The main unknown variables form
together the control sequence u corresponding to
these time moments, i.e. the so called control
profile:

(10) () ;,,, 21 nuuuu L=

Hence, the solution of an OCP, x , may be coded
by

(11) ()Tftux ,= or Tux =

In conclusion, for bilocal problems the unknown
variable tf is adjusted by the algorithm, but paying
attention to the scale factor corresponding to each
component of the solution.

3.3. Dynamic system simulation over a variable
time horizon

Because the final time is variable, it is necessary to
simulate the dynamic system and calculate the
objective function with a variable time horizon. The
both actions can be simplified through a
mathematical artifice: the time-scale
transformation. For example, it holds:

(12)
ft

t
1⋅=τ τdtdt f ⋅=⇒

With this change of the time-variable, the dynamic
system and the objective function become as below:

(13)








−⋅=

−+−⋅=

)]())(1[(

)]())(1()(5[

11
2

121
1

ττ
τ

τττ
τ

uxt
d

dx

uxxt
d

dx

f

f

(14) ∫ −−=
1

0 11)43(τduxJ

The equation (12) allows the call of the function
that makes the dynamic system numerical
integration using invariable parameters. In the same
time, for the objective function computation, one
can call a numerical integration function using
invariable parameters, even in the situation of
having a variable tf that doesn't disappear
completely from the expression of J.

3.4. Bilocal constrains treatment

Let's note that this is a bilocal optimization problem
with fixed final time. The bilocal character can be
treated by adding new penalizing terms in the
objective function related to the fixed state

variables. In our case, the extended objective
function may be

(15)
() ()













⋅⋅+−+

+−⋅+−⋅

∫
1

0 11

2
2

2
1

),()())(43(

.3)1(5.0)1(
min

τττ dux

xcxc

fttu
,

where c is constant chosen by the implementer (for
example, c=50).

3.5. Test and results

The SAA for solving this problem was
implemented and tested under the MATLAB
system. In this implementation, the variable tf will
be present in the function that computes the
derivatives of the state variables for different time
moments.

The values of some parameters used by the SAA for
this problem are given here after:

- the number of elements of the control
profile n=50;

- the number of solution's components,
()xdim =51;

- the SA temperature TA=2;
- b=0.8;
- kmax=20; lmax=10;
- ε1=10-6; ε2=10-6;

The initial solution used for this problem is

[]
43421

L

51

2,0,,0,0 .

SAA, which is a stochastic algorithm, yields a
single solution (control profile) after a single
execution. Therefore, it generates a single
realization of a stochastic process.

That is why we need an execution series that will be
able to characterize the obtained solution. The
execution series consists of a number of runs of
SAA (e.g., 30–40). The average performance index
over the execution series is calculated and a
particular execution, whose performance index is
the closest to the average, may be considered as the
typical execution.

The majority of SAA executions carried out with
the same parameters shows that the stochastic
processes are convergent and meet the bilocal
constraints. This fact is also ascertained when
different parameters are used.

Fig. 2 and 3 show the results obtained in a typical
execution with the parameters indicated before.

The smoothness of the control profile can be
improved using the step control technique that is
not presented in this paper. The decision to apply

THE ANNALS OF “DUN ĂREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2018, VOL. 41, NO. 2, ISSN 2344-4738, ISSN-L 1221-454X

__

 9

this technique is difficult to take when the optimal
control profile could have important discontinuities.

Fig.2. Control profile given by SAA

Fig.3. State evolution given by SAA

Table 1. Results of a typical execution of SAA

Neval: 4154 tf=1.2924
TA final: 3.05·10-6 J=-4.3457
dxl

final: 0.00022995 x1(tf)= 0.53773
 x2(tf)= 3.0019

Table 1 shows the results obtained in a typical
execution of SAA that attest the effectiveness of
this algorithm in solving the given bilocal OCP.
The quasi-optimal solution obtained in (Yamashita,
1997) has the final time tf=1.3415. It is difficult to
compare the two algorithms through the quality of
the final solutions. The presented algorithm based
on the genetic algorithm is more complex because it
makes use of spline interpolation in order to cope
with discontinuous control inputs. For our OCP, the
optimal control profile has points of discontinuity.
That is why, the solution given by the SAA seems
to be inferior from the quality point of view, but
this good solution is obtained after only 4154
evaluations of the objective function. Hence, the
computation complexity of the proposed SAA is
much smaller.

4. OBJECTIVE FUNCTION WITH FINAL TERM

Sometimes the performance index has also a final
penalization term that depends on the final time tf,
which is added to the integral term..

4.1. OCP with final penalization

This OCP is described in the book (Belea, 1985). It
is a problem that can be solved theoretically and
consequently the optimal solution can be expressed
analytically. This fact will allow us to compare the
solution given by SAA with the optimal solution.
The process is modeled by linear state equations
with 2 state variables, x1 and x2, and a control input
u:

(16)




=
=

)(2

21

tux

xx

&

&

The objective function and the performance index
are given hereafter:

(17) f
t

tdttuJ f += ∫0
2)(

2

1
, J

u
min .

The value tf is the final time considered free in this
problem. It is also the terminal term of the objective
function added to the integral term. The initial time
is zero.

In (Minzu 2017), an apparently similar OCP is
formulated, having the same state equation for the
dynamic system and the same initial values. Even
the performance index has the same integral term,
but the terminal penalization, tf, is missing because
it is set from the beginning. Therefore, the problem
is totally different. Nevertheless, some
implementation aspects are the same even if the
used metaheuristic is particle swarm optimization.

The other constraints that complete our OCP are:

- bilocal constraints:

 Tx .]1 .,1[)0(= ;

 T
ftx 0.] .,0[)(= ;

- bound constraints:

 50 ≤≤ u

-final time

 tf: free

4.2. Implementation details

We have used the same solution coding given by
the equation (10). The time-scale transformation
described by (11) can be used as well. The dynamic
system and the objective function can be expressed
as below:

x1: red
x2: blue

THE ANNALS OF “DUN ĂREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2018, VOL. 41, NO. 2, ISSN 2344-4738, ISSN-L 1221-454X

__

 10

(18)








⋅=

⋅=

)(

)(

2

2
1

τ
τ

τ
τ

ut
d

dx

xt
d

dx

f

f

(19) ff tdutJ +⋅⋅= ∫
1

0
2

2
1)(ττ

The values of some parameters used in SAA for this
problem are given here after:

- the number of elements of the control
profile n=50

- the number of solution's components,
()xdim =51;

- the SA temperature TA=0.8;
- b=0.8.
- kmax=20; lmax=10;
- ε1=10-5; ε2=10-4;

The initial solution used by SAA is

[]
44 344 21

L

51

4,2,,2,2 −−− .

In a typical execution, SAA gives the evolution of
the control profile and state variables depicted in
fig. 4.

Table 2 shows the results obtained in a typical
execution of SAA..

Fig.4. The control and the state variables
obtained with SAA

Table 2. Results of a typical execution of SAA for
the second problem

Neval: 11329 tf=2.7811

TA final: 1.14·10-5 J=4.5858

dxl
final: 3.81·10-5 x1(tf)= 0.0166

 x2(tf)= -0.0154

These values can be compared with the theoretic
control and state values given in fig. 5.

Fig.5. The theoretic control and state variables

The theoretic optimal solution is characterized by
the values:

tf
=2.8848; J=4.5393

Obviously, these values are very close to those
given by the SAA. The error of the quasi-optimal
performance index is only 1%, while the error of
the final time found out by the SAA is -3.5%. Also
for this problem, these results show that SAA can
be used in order to obtain very good solutions with
a small computational complexity.

5. CONCLUSION

We have proposed an enriched SAA with elements
devoted to solve OCPs with bilocal constraints. The
contributions of the paper consist in underlining
some practical aspects related to the
implementation. The presentation was made
through the agency of two case studies. The first
example generates a bilocal optimization problem
with fixed final time, while the second one has
treated a problem with free final time. The tests
were implemented within MATLAB system. and
have proved that SAA gives good solutions (control
profiles) and has a small computational complexity.

One can take advantage of the SAA's small
computational complexity and improve the
precision of the control profile through an
appropriate setting of the algorithm's parameters.
The objective is to make the search process more
extensive and intensive in the same time, with a
greater computational complexity.

On the other side, the quality of the solution can be
improved from the point of view of the smoothness
of the control profile. A technique called step
control can be used in a straightforward manner as
in the paper (Minzu, 2017).

As a general conclusion the SAA's implementation
presented in this paper to solve OCP's with bilocal
constraints turned out to be efficient.

x1: red
x2: blue

THE ANNALS OF “DUN ĂREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2018, VOL. 41, NO. 2, ISSN 2344-4738, ISSN-L 1221-454X

__

 11

6. ANNEX A

Description of the classical implementation of SAA

SAA is based on Monte Carlo method and it is a
single solution metaheuristic. The series of the
approaching solutions found out by SAA is a
stochastic process that under certain conditions is a
Markov chain. This process emulates the natural
annealing process. The value of the objective
function J "plays the role" of the energetic level of
the metal. That is why the SAA has an intern
variable called annealing temperature (TA)

For the sake of simplicity, un optimization problem
is presented in this annex having a one-dimensional
solution, but the formulas are straightforward
applicable in the multi-dimensional case.

A pseudo code description of SAA is presented in
fig. 6. The search of the optimal solution is made
through three loops:

- a loop with the counter variable k (k≤kmax),
whose inside contains the actions that
search the local minimum for a constant
temperature TA

m (at step #m) and use the
search step length dxl (at step #l);

- a loop with the counter variable l (l ≤ lmax)
that updates the search step length dxl;

- a loop with the counter variable m that
updates the temperature TA

m.

At the initialization of SAA, the initial solution,
xk=0, of the iterative process and the annealing
temperature, TA

m=0, are set and the value of the
objective function Jk is computed. The main idea is
that the optimal solution is iteratively searched,
trying to improve the solution's quality at each step
k using the recursive equation

(20) lkk
c dxrxx ⋅+=+1 ,

where 1+k
cx is the candidate solution for the next

step, r is random number uniformly distributed in
the interval [-1, 1] and dxl is the current step length.
If the value of objective function is better (in the
case of minimization), that is

(21) () ()kk
c xJxJ ≤+1 ,

then the candidate solution is accepted as next
solution and possible optimal solution (after test):

(22) ;; 1*11 +++ ←← k
cc

k
c

k xxxx

where *
cx is the candidate optimal solution (the best

solution found out until the current step).

If the inequality (18) is nod fulfilled, then the
candidate solution may be accepted as next solution
using the Metropolis rule:

1. Compute C=
() ()













 −−
+

m
AB

kk
c

Tk

xJxJ 1
exp ;

2. Generate a random number p uniformly

distributed in the interval [0, 1];

3. If pC ≥ then accept 1+k
cx

 else keep the same current solution xk.

Taking into account the additional elements
described in section 2, referring to the convergence
of SAA, the three loops employ as final test
condition the following three conditions
respectively:

- condition 1: (k ≤ kmax) and (converg =0);

- condition 2: (l ≤ lmax) and (converg = 0);

- condition 3: (converg = 0);

Fig.6. The base version of SAA

7. REFERENCES

Belea, C; (1985), in book Teoria sistemelor
(System Theory), Editura Didactica si
Pedagogica, Bucuresti.

Simulated Annealing Algorithm
Set the initial solution;
Set the algorithm's parameters
m ←1;
do
 l ←1;
 do
 k ←1;
 do
 # Generate a new current solution;
 # Test the convergence of solutions'
series
 # Evaluate the objective function
 # Apply the Metropolis rule

 k ← k+1;
 while condition 1

 # Updating of the search step length

 l ← l+1;
 while condition 2

 # Update the temperature TA

 m ← m+1;
while condition 3

Display the quasi-optimal solution xc
*

THE ANNALS OF “DUN ĂREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2018, VOL. 41, NO. 2, ISSN 2344-4738, ISSN-L 1221-454X

__

 12

Corana, A. et all. (1987), Minimizing multimodal
functions of continuous variables with the
“simulated annealing” algorithm. ACM
Transactions on Mathematical Software, 13(3),
262–280.

Faber, R.; Jockenhövelb, Tobias; Tsatsaronis,
George; (2005), Dynamic optimization with
simulated annealing; Computers and Chemical
Engineering 29 273–290.

Kirkpatrick, S.; Gelett, C. D. and Vecchi, M. P.;
(1983), Optimization by simulated annealing.
Science 220 621-630

Mînzu, V.; (2017), Optimal control using particle
swarm optimization, The 5th IEEEE
International Symposium on Electrical and
Electronics Engineering, 20-22 October,
Galati, Romania.

Talbi, E.,G.; (2009), in book Metaheuristics from
design to implementation, ISBN 978-0-470-
27858-1, WILEY.

Valadi, J. ; Siarry, P. editors; (2014); Applications
of Metaheuristics in Process Engineering.
ISBN 978-3-319-06507-6, Springer

Yamashita, Y. and M. Shimas;(1997); Numerical
computational method using genetic algorithm
for the optimal control problem with terminal
constraints and free parameters. Nonlinear
Analysis, Theory, Methods & Application, Vol.
30, No. 4, pp. 2285-2290

