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1.  INTRODUCTION 

There is an important interest in solving an Optimal 
Control Problem (OCP) by metaheuristics, because 
of their large computation complexity. Many 
practical aspects concerning the implementation of 
such an algorithm can be found in (Talbi, 2009) and 
(Valadi 2014). In many practical applications, a 
dynamic system is modeled by a set of ordinary 
differential and algebraic equations, associated with 
a set of constraints. 

This work is a study on implementing Simulated 
Annealing (SA) to solve OCPs with bilocal 
constraints related to state variables. Hence the 
implemented algorithm used in this work is 
Simulated Annealing Algorithm (SAA) that is a 
single solution metaheuristic. This means that the 
algorithm proposes a single solution at each step. 
The series of these solutions is a stochastic process, 
which under certain conditions is a Markov chain 
(Kirkpatrick, 1983). 

The first contribution of this paper is an 
implementation of Simulated Annealing Algorithm 
which is devoted to OCPs. A classical version of 
SAA, which is a well-known algorithm, is 
described in (Faber, 2005). In this paper the SAA is 
enriched with some practical solutions related to the 
following aspects: 

� the recognition of the de facto existence of 
the algorithm's convergence; 

� the encoding of the solution used in the 
searching  process; 

� the bilocal constrains treatment when the 
final state is also set from the beginning; 

� the treatment of the constraint involving 
free final time. 

The presentation of these aspects is made through 
the agency of two case studies that generate OCP's 
with bilocal constrains. The both of them have not 
an industrial relevance, but they are useful to 
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understand easily how to implement the special 
parts within SAA. Moreover, the example presented 
in section 3 was the subject of a paper where that 
OCP was solved with a genetic algorithm. 
Therefore, we know a priori a very good solution of 
this one. The second problem described in section 4 
admits a known theoretical solution expressed 
analytically. Hence, the quasi-optimal solutions 
found out by SAA can be compared with the known 
solutions. In this way, it is possible to assess the 
efficiency of SAA in solving the OCP's. 

2. DETAILS CONCERNING SAA 

In order to ensure the coherence of our work's 
presentation, the annex A gives the description of a 
classical implementation of SAA and the notations 
used in the sequel. 

2.1. Integration of the convergence test 

As a new element, the pseudo-code description 
contains a convergence testing bloc aiming to 
apprehend the situation when the algorithm has 
converged to the optimal solution of the problem. In 
this work, this bloc is implemented as below: 

(1)  if ( ) ( ) 1
1* ε≤− +k

cc xJxJ then 1c +← cjj ; 

else 0←cj ; 
(2)  if ( )εNjc ≥ & ( )2ε<AT  then converg ← 1; 

where jc is a variable initialized to zero, used to 
count the number of steps without improvement of 
the objective function, ε1, ε2 and Nε are constant 
values set at initialization. If the distance between 
two values of the objective function is less than ε1, 
SAA considers that the current solution was not 
improved. If TA < ε2, the cooling of TA is sufficient 
to assert that SAA is in its final state. The value Nε 
is the maximum accepted number of steps without 
improvement of the objective function. The action 
(2) will set the variable converg to 1 at the end of 
SAA, when TA is very low and jc exceeds Nε. In our 
implementation, this means that SAA has 
converged and the iteration may stop. At the 
initialization of the algorithm, converg is set to 0. 

In our proposition, SAA counts the calls of the 
objective function and stores the value in the 
variable Neval. At the end of the running of SAA, its 
value will be a measure of the algorithm's 
computational complexity for solving the given 
problem. During the running of SAA, the value of 
Neval is tested repeatedly. If this one exceeds a 
maximum number of calls, which is parameter of 
the algorithm, the variable converg will take the 
value 2 that codifies the situation when the 
algorithm is not convergent. 

Taking into account the elements presented before, 
the three repetitive structures described in annex A 
employ as final test condition the following three 
conditions respectively: 

 condition 1: (k ≤ kmax ) and (converg =0); 

 condition 2: (l ≤ lmax ) and (converg = 0); 

 condition 3: (converg = 0); 

 
2.2. Implementation of step length adjustment 

A very important mechanism for the dynamic of 
SAA is the adjustment of the step length across the 
iterative process. In this work, it was used a tuning 
method that is classical method presented in 
(Corana, 1987) slightly modified. A key element of 
this method is the ratio 

(3)  
eval

accept

N

N
a = , 

where Naccept is the number of steps whose new 
candidate solution was accepted as current solution, 
even if it is worse than the current one. The strategy 
of this method is to keep the value of a as close as 
possible to 0.5 over the running of the algorithm. If 
a is too big, then too many steps that are not 
necessary are accepted and, as a consequence, the 
computation time is too big. Conversely, if a is too 
small then SAA fails in a local minimum. 

The updating of the search step length used in this 
work is practically that one presented in (Corana, 
1987), according to the next equation: 
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Hence the updating is determined by the function 
(4) depicted in Fig.2. 
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Fig.1. Updating the step length 

There is also a relation between dxl and the 
temperature TA. When TA has a high level, solutions 
with bigger value of the objective function (in the 
case of minimization) may be accepted and a 
greater step length may be adopted in order to cover 
a larger search zone. That is why the initial value of 
TA is big enough to allow that practically all the 
moves are accepted by Metropolis rule. In this way, 
at least potentially the algorithm can find out the 
optimal solution x*. As fast as TA decreases, the 
step length has to be reduced such that degraded 
values of the objective function would be accepted 
with a ratio a smaller and smaller. 

2.3. Implementation of cooling scheme 

As it results from fig. 1, for each m the temperature 
m
AT has a constant value for lmax adjustments of the 

step length. In this way a homogeneous Markov 
chain in generated. When this algorithm goes well, 
the optimal value xc

*  corresponding to the current 

temperature m
AT is found out within the lmax 

adjustments. After that the iterative process (the 
repetitive structures after k and l) starts again from 

xc
* with the new adjusted temperature 1+m

AT . At the 

end of the cooling scheme, the optimal solution is 
found out, i.e. xc

*= x*. 

One of the most popular cooling schemes that could 
lead to the optimum solution determination is 
described in (Kirkpatrick, 1982). This one is 
described by the following geometric series: 

(6)  m
A

m
A TbT ⋅=+1 , 10 ≤≤ b . 

With this cooling scheme the convergence is 
guaranteed and the number of objective function 
evaluations is acceptable. Good results are obtained 
for 99.05.0 ≤≤ b . A global optimum may be 
reached when 1→b , i.e. the cooling is very slow. If 
b has a small value, SAA may stop very fast 
without finding the global optimum. 

3. BILOCAL OPTIMAL CONTROL RELATED 
TO STATE AND FREE FINAL TIME 

This is a special optimal control problem (Minzu, 
2017) where the dynamic process has a state 
representation and the initial and final states are 
imposed from the beginning, defining thus the 
bilocal character of the problem. The OCP is also 
completed by some equality and inequality 
constraints. The employment of SAA to solve this 
kind of problems is illustrated by two examples. 

3.1. Case study 

As a first case study, we take in consideration un 
example of OCP described in (Yamashita, 1997), 
where the authors have used a genetic algorithm to 
solve this problem. The process is modeled by 
nonlinear state equations with 2 state variables, x1 
and x2, and a control input u1: 

(7)  
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The objective function and the performance index 
are given hereafter: 

(8)  ∫ −−= ft

f
dtux

t
J

0 11)43(
1

, J
u1

min . 

The value tf is the final time considered free 
(unknown) in this problem. The initial time is zero. 
The other constraints that complete the OCP are: 

-bilocal constraints: 

 Tx .]0 .,1[)0( = ; 

 T
ftx 3.0] ,5.0[)( = ; 

-bound constraints: 

 100 1 ≤≤ u  

-final time 

 tf: free 

3.2. Encoding of the optimal solution  

The optimal solutions are searched in a specific 
space using a time horizon that is [0, tf]. The time 
discretization yields a sequence of n time moments, 
usually equidistant (Minzu, 2017), which cover the 
time horizon: 

(9) ( ) fn
T

n tttttt ==    with;,,, 21 L  

When the final time is free, the SAA search its 
value by applying random variations at every step 
of the SAA, like for any other unknown component 
of the solution. Usually the value of n is a constant, 

f(a) 
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set by the algorithm at initialization. Because the 
value of tf=tn changes during the execution, the 
values of the other time moments also changes 
accordingly. The main unknown variables form 
together the control sequence u corresponding to 
these time moments, i.e. the so called control 
profile: 

(10) ( )  ;,,, 21 nuuuu L=  

Hence, the solution of an OCP, x , may be coded 
by  

(11) ( )Tftux ,=  or Tux =  

In conclusion, for bilocal problems the unknown 
variable tf is adjusted by the algorithm, but paying 
attention to the scale factor corresponding to each 
component of the solution. 

3.3. Dynamic system simulation over a variable 
time horizon 

Because the final time is variable, it is necessary to 
simulate the dynamic system and calculate the 
objective function with a variable time horizon. The 
both actions can be simplified through a 
mathematical artifice: the time-scale 
transformation. For example, it holds: 

(12)  
ft

t
1⋅=τ τdtdt f ⋅=⇒  

With this change of the time-variable, the dynamic 
system and the objective function become as below: 

(13) 
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(14) ∫ −−=
1

0 11)43( τduxJ  

The equation (12) allows the call of the function 
that makes the dynamic system numerical 
integration using invariable parameters. In the same 
time, for the objective function computation, one 
can call a numerical integration function using 
invariable parameters, even in the situation of 
having a variable tf that doesn't disappear 
completely from the expression of J.  

3.4. Bilocal constrains treatment 

Let's note that this is a bilocal optimization problem 
with fixed final time. The bilocal character can be 
treated by adding new penalizing terms in the 
objective function related to the fixed state 

variables. In our case, the extended objective 
function may be 

(15) 
( ) ( )
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where c is constant chosen by the implementer (for 
example, c=50). 

3.5. Test and results 

The SAA for solving this problem was 
implemented and tested under the MATLAB 
system. In this implementation, the variable tf will 
be present in the function that computes the 
derivatives of the state variables for different time 
moments. 

The values of some parameters used by the SAA for 
this problem are given here after: 

- the number of elements of the control 
profile n=50; 

- the number of solution's components, 
( )xdim =51; 

- the SA temperature TA=2; 
- b=0.8; 
- kmax=20; lmax=10; 
- ε1=10-6; ε2=10-6; 

The initial solution used for this problem is 

[ ]
43421

L

51

2,0,,0,0 . 

SAA, which is a stochastic algorithm, yields a 
single solution (control profile) after a single 
execution. Therefore, it generates a single 
realization of a stochastic process. 

That is why we need an execution series that will be 
able to characterize the obtained solution. The 
execution series consists of a number of runs of 
SAA (e.g., 30–40). The average performance index 
over the execution series is calculated and a 
particular execution, whose performance index is 
the closest to the average, may be considered as the 
typical execution. 

The majority of SAA executions carried out with 
the same parameters shows that the stochastic 
processes are convergent and meet the bilocal 
constraints. This fact is also ascertained when 
different parameters are used. 

Fig. 2 and 3 show the results obtained in a typical 
execution with the parameters indicated before. 

The smoothness of the control profile can be 
improved using the step control technique that is 
not presented in this paper. The decision to apply 
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this technique is difficult to take when the optimal 
control profile could have important discontinuities. 

 
Fig.2. Control profile given by SAA 

 

 

Fig.3. State evolution given by SAA 

Table 1. Results of a typical execution of SAA 

Neval: 4154 tf=1.2924 
TA final: 3.05·10-6 J=-4.3457 
dxl

final: 0.00022995 x1(tf)= 0.53773 
 x2(tf)= 3.0019 

Table 1 shows the results obtained in a typical 
execution of SAA that attest the effectiveness of 
this algorithm in solving the given bilocal OCP. 
The quasi-optimal solution obtained in (Yamashita, 
1997) has the final time tf=1.3415. It is difficult to 
compare the two algorithms through the quality of 
the final solutions. The presented algorithm based 
on the genetic algorithm is more complex because it 
makes use of spline interpolation in order to cope 
with discontinuous control inputs. For our OCP, the 
optimal control profile has points of discontinuity. 
That is why, the solution given by the SAA seems 
to be inferior from the quality point of view, but 
this good solution is obtained after only 4154 
evaluations of the objective function. Hence, the 
computation complexity of the proposed SAA is 
much smaller. 

4. OBJECTIVE FUNCTION WITH FINAL TERM 

Sometimes the performance index has also a final 
penalization term that depends on the final time tf, 
which is added to the integral term..  

4.1. OCP with final penalization 

This OCP is described in the book (Belea, 1985). It 
is a problem that can be solved theoretically and 
consequently the optimal solution can be expressed 
analytically. This fact will allow us to compare the 
solution given by SAA with the optimal solution. 
The process is modeled by linear state equations 
with 2 state variables, x1 and x2, and a control input 
u: 

(16)  




=
=

)(2

21

tux

xx
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The objective function and the performance index 
are given hereafter: 

(17)  f
t

tdttuJ f += ∫0
2 )(

2

1
, J

u
min . 

The value tf is the final time considered free in this 
problem. It is also the terminal term of the objective 
function added to the integral term. The initial time 
is zero. 

In (Minzu 2017), an apparently similar OCP is 
formulated, having the same state equation for the 
dynamic system and the same initial values. Even 
the performance index has the same integral term, 
but the terminal penalization, tf, is missing because 
it is set from the beginning. Therefore, the problem 
is totally different. Nevertheless, some 
implementation aspects are the same even if the 
used metaheuristic is particle swarm optimization. 

The other constraints that complete our OCP are: 

- bilocal constraints: 

 Tx .]1 .,1[)0( = ; 

 T
ftx 0.] .,0[)( = ; 

- bound constraints: 

 50 ≤≤ u  

-final time 

 tf: free 

4.2. Implementation details 

We have used the same solution coding given by 
the equation (10). The time-scale transformation 
described by (11) can be used as well. The dynamic 
system and the objective function can be expressed 
as below: 

x1: red 
x2: blue 
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(18)  
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The values of some parameters used in SAA for this 
problem are given here after: 

- the number of elements of the control 
profile n=50 

- the number of solution's components, 
( )xdim =51; 

- the SA temperature TA=0.8; 
- b=0.8. 
- kmax=20; lmax=10; 
- ε1=10-5; ε2=10-4; 

The initial solution used by SAA is 

[ ]
44 344 21

L

51

4,2,,2,2 −−− . 

In a typical execution, SAA gives the evolution of 
the control profile and state variables depicted in 
fig. 4. 

Table 2 shows the results obtained in a typical 
execution of SAA.. 

 

Fig.4. The control and the state variables 
obtained with SAA 

Table 2. Results of a typical execution of SAA for 
the second problem 

Neval: 11329 tf=2.7811 

TA final: 1.14·10-5 J=4.5858 

dxl
final: 3.81·10-5 x1(tf)= 0.0166 

 x2(tf)= -0.0154 

These values can be compared with the theoretic 
control and state values given in fig. 5. 

 

Fig.5. The theoretic control and state variables 

The theoretic optimal solution is characterized by 
the values:  

tf
*=2.8848; J*=4.5393 

Obviously, these values are very close to those 
given by the SAA. The error of the quasi-optimal 
performance index is only 1%, while the error of 
the final time found out by the SAA is -3.5%. Also 
for this problem, these results show that SAA can 
be used in order to obtain very good solutions with 
a small computational complexity. 

5. CONCLUSION 

We have proposed an enriched SAA with elements 
devoted to solve OCPs with bilocal constraints. The 
contributions of the paper consist in underlining 
some practical aspects related to the 
implementation. The presentation was made 
through the agency of two case studies. The first 
example generates a bilocal optimization problem 
with fixed final time, while the second one has 
treated a problem with free final time. The tests 
were implemented within MATLAB system. and 
have proved that SAA gives good solutions (control 
profiles) and has a small computational complexity. 

One can take advantage of the SAA's small 
computational complexity and improve the 
precision of the control profile through an 
appropriate setting of the algorithm's parameters. 
The objective is to make the search process more 
extensive and intensive in the same time, with a 
greater computational complexity. 

On the other side, the quality of the solution can be 
improved from the point of view of the smoothness 
of the control profile. A technique called step 
control can be used in a straightforward manner as 
in the paper (Minzu, 2017).  

As a general conclusion the SAA's implementation 
presented in this paper to solve OCP's with bilocal 
constraints turned out to be efficient. 

x1: red 
x2: blue 
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6. ANNEX A 

Description of the classical implementation of SAA 

SAA is based on Monte Carlo method and it is a 
single solution metaheuristic. The series of the 
approaching solutions found out by SAA is a 
stochastic process that under certain conditions is a 
Markov chain. This process emulates the natural 
annealing process. The value of the objective 
function J "plays the role" of the energetic level of 
the metal. That is why the SAA has an intern 
variable called annealing temperature (TA) 

For the sake of simplicity, un optimization problem 
is presented in this annex having a one-dimensional 
solution, but the formulas are straightforward 
applicable in the multi-dimensional case.  

A pseudo code description of SAA is presented in 
fig. 6. The search of the optimal solution is made 
through three loops: 

- a loop with the counter variable k (k≤kmax), 
whose inside contains the actions that 
search the local minimum for a constant 
temperature TA

m (at step #m) and use the 
search step length dxl (at step #l); 

- a loop with the counter variable l (l ≤ lmax) 
that updates the search step length dxl; 

- a loop with the counter variable m that 
updates the temperature TA

m. 

At the initialization of SAA, the initial solution, 
xk=0, of the iterative process and the annealing 
temperature, TA

m=0, are set and the value of the 
objective function Jk is computed. The main idea is 
that the optimal solution is iteratively searched, 
trying to improve the solution's quality at each step 
k using the recursive equation  

(20) lkk
c dxrxx ⋅+=+1 , 

where 1+k
cx is the candidate solution for the next 

step, r is random number uniformly distributed in 
the interval [-1, 1] and dxl is the current step length. 
If the value of objective function is better (in the 
case of minimization), that is 

(21) ( ) ( )kk
c xJxJ ≤+1 , 

then the candidate solution is accepted as next 
solution and possible optimal solution (after test): 

(22) ;; 1*11 +++ ←← k
cc

k
c

k xxxx    

where *
cx  is the candidate optimal solution (the best 

solution found out until the current step). 

If the inequality (18) is nod fulfilled, then the 
candidate solution may be accepted as next solution 
using the Metropolis rule: 

1. Compute C=
( ) ( )













 −−
+

m
AB

kk
c

Tk

xJxJ 1
exp ; 

2. Generate a random number p  uniformly 

distributed in the interval [0, 1]; 

3. If pC ≥ then accept 1+k
cx  

 else keep the same current solution xk. 

Taking into account the additional elements 
described in section 2, referring to the convergence 
of SAA, the three loops employ as final test 
condition the following three conditions 
respectively: 

- condition 1: (k ≤ kmax ) and (converg =0); 

- condition 2: (l ≤ lmax ) and (converg = 0); 

- condition 3: (converg = 0); 

 
Fig.6. The base version of SAA 
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