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Abstract: This paper presents a pipelined FPGA implementation of an engine that 
computes Newtonian gravitational forces. The module can be incorporated in a large-
scale N-body simulation as the primary component used for computing the interaction 
between bodies. It uses 64-bit floating point arithmetic and relies on the speed provided 
by the “Fast Inverse Square” root algorithm. The design was implemented and tested on 
an Altera DE10-Lite FPGA. 
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1. INTRODUCTION 

An “N-body simulation” involves computing the 
evolution of a system composed of N bodies, where 
each object interacts continuously with the others. 
Such simulations have extensive use in various 
applications, such as the formation and evolution of 
planetary systems, protein folding, and computer 
graphics global illumination.  

A specific type of N-body simulation is the 
“Newtonian N-body problem” which involves 
computing the positions of N bodies in space, at 
equal discrete time intervals, assuming that the 
bodies interact through gravitational forces only. 

Due to the fact that this problem is very demanding 
in terms of computational resources and floating-
point operations, custom computing machines and 
GPUs are more suitable for high-performance 
designs (Che et al., 2008; Tsoi et al., 2010; Jones et 
al., 2010). 

Extensive research has been done in the area of 
FPGA-based solutions for the astrophysical many-
body simulation (Sano, et al., 2017; Kim, et al., 
2007; Gothandaraman, et al., 2006; Phillips, et al., 
2006; Lienhart, et al., 2002). Custom boards such as 
the PROGRAPE-3 have reached speeds up to 40 
GFLOPS (Nakasato and Hamada 2007), while 
maintaining the specialized pipeline structure 
flexible.  

In the context of many-body simulations, Graphical 
Processing Units are also good candidates for 
implementing high-performance and efficient 
computations (Bédorf, et al., 2012; Jetley et al., 
2010, Harris, 2005; Nyland, et al., 2007; Hamada and 
Iitaka, 2007). In terms of processing power and cost, 
GPU-based platforms seem to outperform FPGAs, 
but the performance per Watt figure in O(N^2) 
gravitational N-body simulations on FPGA systems 
proved to be 15 times higher (Hamada, et al.,  2009). 

The solution presented in this paper takes the custom 
hardware implementation approach on the FPGA, 
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making the design flexible, high-performance and at 
the same time keeping the power consumption low. 
The pipelined architecture computes the interaction 
between bodies with the increased accuracy provided 
by the IEEE 754 double-precision floating point 
operations and the speed of the “Fast inverse square 
root” algorithm. The implementation and testing was 
done on an Altera DE10-Lite hardware design 
platform build around the MAX 10 FPGA chip with 
50K logical elements available. 

2. IMPLEMENTATION 

The force vector on body i, caused by the 
gravitational attraction of body j is 
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where mi and mj are the masses of body i and j and rij 

= xj – xi is the vector from body i to body j. 

According to the superposition principle, the total 
force Fi on body i, caused by the interaction with the 
other N – 1 bodies is  
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The design assumes a 2D simulation, therefore the 
last stage of the pipeline will provide the X and Y 
components of the gravitational force: 
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Where (xi, yi) and (xj, yj) are the positions of the i and 
j bodies, and r is 
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These results could be subsequently used to compute 
the acceleration ai needed to integrate over time and 
update the positions and velocities of particle I: 
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where Fi is the total force Fi on body i, caused by the 
interaction with the other N – 1 bodies: 
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2.1. Fast Inverse Square Root  

A faster alternative to the computationally expensive 
floating point technique of computing the reciprocal 
of a square root is the “Fast inverse square root” 
algorithm (Lomont, 2003). It was originally designed 
for 32-bit floating point arithmetic, but the magic 
value for 64-bit floating point operations was later 
determined to be 0x5FE6EB50C7B537A9 
(Robertson, 2009). 

The algorithm starts with a very good first 
approximation of the inverse square root of the input, 
then it runs one iteration of Newton’s method, to 
increase accuracy. 

In this case, this algorithm is used to compute the 
inverse square root of r3: 

float Q_rsqrt(float r_cube) 
{ 
threehalfs = 1.5F; 
x2 = r_cube * 0.5F; 
y  = 0x5FE6EB50C7B537A9 - (r_cube >> 1); 
y  = y * (threehalfs - ( x2 * y * y )); 
return y; 
} 

 
2.2. FPGA implementation and testing 

The force module was synthetized and tested on an 
Altera De10-Lite board, along with an UART 
module, for testing purposes. The design is clocked 
from the onboard 50MHz oscillator and makes use of 
approximately 27 thousand logical elements from the 
50 thousand available. 

 

Fig.1. Hardware setup 
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Fig.2. Resource utilization (Quartus II) 

The force pipeline is fed through the serial port of a 
computer running Linux, with the particles’ (x, y) 
positions in 64-bit floating point representation. The 
output values are the gravitational force components 
on the X, respectively Y axis, which are transferred 
from the FPGA back to the computer by the UART 
module. An USB to serial converter was used for the 
two-way communication. 

 

Fig.3. Test setup 

64-bit floating point addition and multiplication 
blocks have been implemented in hardware.  

The force pipeline consists of 10 stages, each stage 
being executed in one clock cycle and having its own 
multiplier/adder blocks incorporated. Because of the 
local buffering done by the registers present in each 
stage, the pipeline could be theoretically fed with a 
new particle at each clock cycle, without the risk of 
structural/data hazards. 

In the current implementation, on-chip resources 
(embedded multipliers and logical elements) have 
been traded in favor of speed and accuracy. The high 
number of embedded multipliers used in the design 
(198 – 69% of the total available) is due to the 
increased accuracy provided by the IEEE 754 double-
precision binary format. However, for some multi-
body simulation applications, this level of precision 
may be overkill. Because the modules responsible for 
performing floating point arithmetic were written 
with re-usability in mind, using the VHDL “generic” 
parameters, much lower resource utilization could 
potentially be achieved, by reducing the mantissa 
size. 

The test scenario involved transmitting the particles’ 
positions from a computer, through a serial 
connection. However, in order to fully take 
advantage of the pipelined architecture, a capable 
particle controller should be synthesized alongside 
the force module. In a real-world large scale 
numerical N-body simulation, the controller should 
be able to feed the pipeline at a considerably high 
rate, which might pose some challenges considering 
the fact that the MAX10 FPGA chip is relatively 
small in terms of resources. 

 

Fig.4. Pipeline block diagram. 

The code was written in VHDL93, is open-source 
and can be found at 
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https://github.com/ovpanait/nbody-pipeline, on git 
branch PIPEF. 

3. CONCLUSION 

This paper presented a hardware implementation of a 
pipelined gravitational force engine on an Altera 
MAX10 based development board. This particular 
design proved that the “Fast inverse square root” 
algorithm and 64-bit floating point arithmetic blocks, 
along with a pipelined architecture provide a flexible, 
high-performance and highly accurate way to 
compute the interactions between objects in the 
context of many-body simulations. 
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