
THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2020, VOL. 43, SPECIAL ISSUE, ISSN 2344-4738, ISSN-L 1221-454X

ELECTROTECHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS
Article DOI: https://doi.org/10.35219/eeaci.2020.2.01

A WEB PLATFORM FOR GENERATING GRAPHICAL USER INTERFACES

Andreea Elena Țîru

“Dunarea de Jos” University of Galati, Faculty of Automation, Computer Sciences,
Electronics, and Electrical Engineering

e-mail: et156@student.ugal.ro

Abstract: This paper is a general description of a Python-based web platform developed
by the author that generates Graphical User Interfaces (GUIs) for software programs. It
presents both technical and theoretical aspects of programming, Python libraries,
chatbot development and auto-generating graphical interfaces. The article proposes an
overview of a web system, explained with the help of diagrams.

Keywords: graphical user interface, python, web platform, auto-generating, front-end.

1. INTRODUCTION

A Graphical User Interface (GUI) involves a
dynamic and interactive system of visual components
for software programs (Meier, 2017). It is well-
known as a user-friendly tool easy to manipulate on
any device. Its evolution in software applications has
increased programming productivity and code
complexity. As direct-manipulation interfaces
become more comfortable to use, they become harder
to create, implement, debug and modify.

This work proposes a Python-based platform for
generating GUIs. Well-known for its features as an
object-oriented programming language, Python
provides along with cross-platform support an
extensive standard library. The result achieved using
its features was a web platform, committed to
providing graphical solutions to Python developers,
for small web applications and sequences of code.

When writing any programs, consistency helps us
keep the code readable and maintainable. That is
why, while developing a module, an extension, or a
core patch, developers should strive to follow some
guidelines.

Conceived so that third-party extensions could easily
have a user interface integrated, the web platform
technically bases on a 3-tier architecture (computer
data/object storage - digital access controlled through

files in the “classes” folder, data access - user-
provided content related to storing and retrieving
files in the “root” folder and design - the files of the
generated interface located in the “/theme folder”).

Fig.1. MVC interfacing with 3-tier1 architecture

1.1. Core Development

The driving idea behind a custom architecture was
the need to have a more robust, modular, and fully
testable code. Using a proven and popular open-

1 a client-server architecture in which the functional process logic,
data access, computer data storage and user interface are
developed as independent modules on separate platforms. This is
the same principle as a Model View Controller (MVC)
architecture, only in a simpler and more accessible way (Fig.1).

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2020, VOL. 43, SPECIAL ISSUE, ISSN 2344-4738, ISSN-L 1221-454X

ELECTROTECHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS
Article DOI: https://doi.org/10.35219/eeaci.2020.2.01

source programming language came with the
necessity of adopting some coding standards. General
conventions as using UTF-8 (Unicode
Transformation Format – 8-bit) without BOM (Byte
Order Mark) and using the Unix LF (Line Feed)
ending with a single blank line are absolute
requirements. Regarding Python code conventions,
files must follow the PEP-4 and PEP-8 standards.2
Yoda conditions3 are also suggested, but not
enforced. Naming conventions strictly apply for
Controllers & actions, Templates, Routes and Paths.

1.2. Domain-Driven Architecture

The platform’s architecture is progressively evolving
into a new web generation, inspired by Eric Evan’s
Domain-driven design - DDD (Haywood, 2009). It
makes the architecture more natural to understand
and maintain. One of the main principles of DDD is
the CQRS - Command Query Responsibility
Segregation (Fig.2).

Fig.2. CQRS model.

CQRS represents the implementation of two different
models of interaction with the UI (User-Interface)
and the DB (Database). This separation occurs based
upon whether the methods represent a CM
(Command Model) or a QM (Query Model).

Beyond this introduction, the paper is structured as
follows: Section 2 exemplifies the architecture of a
chatbot; Section 3 illustrates the functionalities of the
developed web platform and the steps required to
achieve a graphical user interface. The thinking
behind the expected result and its possible
customization is explained in Section 4.

2 coding conventions for the Python code comprising the standard
library in the main Python distribution.

3 a programming style where the two parts of an expression are
reversed from the typical order in a conditional statement. A Yoda
condition places the constant portion of the expression on the left
side of the conditional statement.

2. FOLLOWING AN APPLICATION EXAMPLE

A cross-platform application's extensibility revolves
around small programs that make use of different
functionalities—having a graphical interface
generated means automatically having included
template (.tpl) files and assets (images, icons,
JavaScript, CSS – Cascading Style Sheets) to the
source code, to display the interface on different
cross-platform devices and software.

Developing and discovering software products is the
ideal way to expose solutions to users' needs.
Standard components used in web programs display a
variety of content, perform many tasks and interact
with other tools. The more intuitive the design of an
application is, the easier it will be to use.

A type of application that includes all the above is a
chatbot.

2.1. Developing a Chatbot

A chatbot is an automated software program used in
dynamic dialog systems that simulates human
conversations (Raj, 2019). A chatbot requires NLP
(natural language processing) implementation and
conducts a conversation via auditory or textual
methods (Fig.3).

NLTK4 is a leading library for building Python
programs to work with human language data.
Common Python chatbots make use of this library
and its components, such as classification,
tokenization, stemming, tagging, parsing and
semantic reasoning.

Fig.3. Example of a conversational AI chatbot
architecture.

Assuming that a chatbot's functionalities were
already developed, and the source code follows the
platform's core development guidelines, the

4 Natural Language Toolkit, a suite of libraries and programs for
symbolic and statistical natural language processing (NLP) for
English written in the Python programming language.

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2020, VOL. 43, SPECIAL ISSUE, ISSN 2344-4738, ISSN-L 1221-454X

ELECTROTECHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS
Article DOI: https://doi.org/10.35219/eeaci.2020.2.01

following sections will use it as an example to
understand how the interface generator works.

3. GENERATING THE GRAPHICAL USER
INTERFACE

In short terms, generating means bringing into
existence. Generating a graphical user interface
means automatically creating and displaying a design
to a specific program. The current platform adapts to
software products needs using an intelligent system,
and outputs unique front-end displays tailoring the
code. The steps for uploading a project are intuitive
and include advanced development functionalities
(Fig.4).

Fig.4. An illustration of the main steps used for
generating an interface.

The first step of setting up a project is to upload the
Python code of the application on the web platform.
It should consist of all required folders and files,
compressed within any archive.

The second step the platform does is to verify the
uploaded content. A more simplified approach used
in this platform's development is to generate a hash
of the copied file and compare it to the hash of the
original file. In other words, the system browses
through folders and files for systematic corruption.
Besides this, it also checks if the folder and files are

structured as required and if they follow the core
development references.

The third step requires a Python syntax validation.
An online complex debugger was implemented using
the PDB5 module. Any unexpected error is output
and, to simplify the modifying process, a live code
editor is available. The user will not have to pause /
to break the generating process and upload the
project again.

The fourth step involves user interaction. The
developer must type in the keywords that best
describe the program’s category and features. The
implemented system searches through an extensive
database of web terms and notions, sending the
values to the generator’s analyser.

The fifth step is not mandatory but recommended if
there is a design direction the intelligent generator
should follow. Design expectations and ideas should
be typed within a natural language, describing as
many details as possible, so that the final design will
fit exactly the expectations. If the input is not
completed, the generated interface will mix
components and output editable content. At the base
of this functionality stands text mining and natural
language processing.

The last step is generating the GUI. The expected
result consists of HTML, CSS and Bootstrap code,
all wrapped within a modern graphic design.

4. FINAL RESULT

Before downloading the final project, the user can
manually edit the interface's appearance by dragging
and dropping different template components and then
customizing them (Fig. 5).

5 Python Debugger Module. It defines an interactive source code
debugger for Python programs and supports conditional
breakpoints at the source line level, an inspection of stack frames,
source code listing, and evaluation of arbitrary Python code in the
context of any stack frame.

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2020, VOL. 43, SPECIAL ISSUE, ISSN 2344-4738, ISSN-L 1221-454X

ELECTROTECHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS
Article DOI: https://doi.org/10.35219/eeaci.2020.2.01

Fig. 5 Illustration of drag and drop system, for an
auto-generated chatbot interface.

A template is a basic pre-uploaded design model that
includes layers and objects, used to perform a high-
quality design output. Based on image recognition
and web scraping, its goal is either to generate a close
representation of the description typed in by the user,
or a unique assembly of components never output
before.

The final code is then available to download. It
includes the uploaded code and the generated
interface code, located in the “/theme folder”. After
this, the application is ready to be implemented as
intended.

5. CONCLUSIONS

The advantages of having an interface automatically
generated and implemented can be classified into two
main groups.

First, the quality of the resulting user interface might
be higher, for the following reasons: design can be
rapidly prototyped and implemented, the reliability of
the user interface will be higher because the code is
created automatically from a higher-level
specification and more effort can be expended on the
functionalities’ development of the uploaded
application.

Second, once generated, the UI (User Interface) code
might be more comfortable and more economical to
maintain. This is because there will be better
modularization, due to the separation of the UI
component from the application and there will also
be less front-end code to write because the project
can be uploaded on the modification’s webpage.

In conclusion, as tomorrow’s user interfaces will
provide speech recognition, vision from cameras, 3-
D, intelligent agents and integrated multimedia, a
solution to simplify developers current work for UIs
based graphics is to provide intelligent tools that can
minimize the development time and increase the code
quality of the applications.

6. REFERENCES

Haywood, D. (2009). Domain-Driven Design: Using
Naked Objects, pp.223. The Pragmatic
Programmers LLC, Raleigh.

Meier, B.A. (2017). Python GUI Programming

Cookbook: Develop beautiful and powerful
GUIs using the Python programming language,
pp.126. Packt Publishing Ltd, Birmingham.

Raj, S. (2019). Building Chatbots with Python: Using
Natural Language Processing and Machine
Learning, pp.205. Apress Media, California.

