
THE ANNALS OF “DUN ĂREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2017, VOL. 40, NO. 2, ISSN 2344-4738, ISSN-L 1221-454X

ELECTROTECHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS
__

OPTIMAL CONTROL USING EVOLUTIONARY ALGORITHMS

Viorel MINZU

Department of Automation and Electrical Engineering,“Dunarea de Jos” University of
Galati, Romania

Abstract: Optimal Control Problems involve dynamic systems that are subject to
algebraic or differential constraints and whose evolution may be characterized by a
performance index. Such a problem can be solved by the well known Evolutionary
Algorithms. This paper proposes an evolutionary algorithm having usual characteristics
concerning the mutation and crossover operators. Generally speaking, the EA gave good
results and the convergence was acceptable. But for a specific problem instance, the
evolutionary algorithm underperformed on the first simulation series. Therefore, the
paper proposes a new mutation operator having adaptive Gaussian standard deviation of
genes' values variation.

Keywords— optimal control, Evolutionary Algorithm, mutation, adaptive Gaussian
standard deviation

1. INTRODUCTION

An Optimal Control Problem (OCP) involves a
dynamic system whose model is supposed to be
known. Its evolution is subject to algebraic or
differential constraints and initial conditions. This
evolution may be characterized by a performance
index that quantifies the fulfillment of the control
objective.

This work proposes an evolutionary algorithm (EA)
for solving OCPs. The genetic algorithm (GA) is a
particular case of EAs that uses a special encoding
of solutions (usually a binary encoding), which is
related to the notions of genotype and phenotype.
Because such an encoding is not needed in our case,
EA is a natural option for solving an OCP.

There are many works that deal with EAs and GAs
in a general manner, among which we recall the
books (Kruse et all., 2016), (Siarry Patrick (Ed),
2016;), (Talbi E.G.,2009), (Onwubolu, 2004) and
the paper (Abraham et all.,2005). Other group of
works deals with the solving of OCPs using
metaheuristic algorithms including EA: (Chiang,
2015), (Fogel,1994), (Qian, 2012), (Valadi, 2014),
(Minzu, 2017).
The implementation of the algebraic and differential
constraints within metaheuristics is a very important
topic of the papers (Faber et al., 2004),
(Michalewicz et al., 1992) and (Yamashita and
Shimas, 1997).

The section 2 describes in a general manner the
model of an OCP with its elements: the process
model, initial conditions, algebraic equality, path

THE ANNALS OF “DUN ĂREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2017, VOL. 40, NO. 2, ISSN 2344-4738, ISSN-L 1221-454X

__

 31

constraints, terminal equality constraints and bound
constraints. The process model is considered as
being a discrete recursive equation like in section 4,
which treats a case study.

Section 3 is devoted to the description of the EA.
The general structure of this algorithm being
already well-known, this section gives the details
and characteristics that particularize the proposed
algorithm: the solutions' encoding, generation of the
initial population, mutation operator, crossover
operator and the other specific options for an EA.

A case study is presented in section 4, namely the
well-known Linear Quadratic Problem (LQP), the
discrete version. We chose this OCP as subject of
our case study, because its theoretic optimal
solution is known and can be compared with the
solution given by the EA. In the first stage of our
study, a simple MATLAB version of the proposed
EA has been implemented using a non-uniform
mutation operator and a single-point crossover
operator. Four LQP instances defined in the paper
made the object of the proposed EA. For each
instance, the algorithm has been carried out 30
times due to its stochastic nature. Generally
speaking, the EA has converged to good solutions,
but very slowly. A huge number of objective
function evaluations have been made, fact that
decreases the efficiency of the proposed EA. That is
why, in the second stage of our study, a new version
of the proposed EA has been implemented using a
mutation operator with adaptive Gaussian standard
deviation. In this way, the genes' values variation is
well controlled along the algorithm execution. This
new version of the EA gives very good results. The
convergence speed increases and the objective
function evaluations' number is 15-20 times
smaller.

Some conclusions are drawn in section 5 that
emphasis the efficiency of the proposed EA.

2. MODEL OF OPTIMAL CONTROL PROBLEM

An OCP has some constitutive elements that are
recalled hereafter. Certain mathematical details are
avoided in order to simplify the presentations. The
statement of an OCP has as a main element the
model of a dynamic system. This one is modeled by
a general differential equation or a discrete
recursive equation

(1) kkk uBxAx ⋅+⋅=+1 ,

(2) yk=C·xk

where A, B and C are matrices with appropriate
dimensions.

The variables used in this equation are as follows:

� t: the continuous or discrete time, ∈t R or
Z;

�)(tx : the vector of state variables;

�)(ty : the vector of algebraic variables

(usually system output variables).

�)(tu : the vector of control variables.

The OCP is also defined by some equality and
inequality constraints listed below:

• initial conditions,

• algebraic equality,

• path constraints,

• terminal equality constraints (tf is the final
time)

• and bound constraints:

(3) Mm xtxx ≤≤)(;

(4) Mm utuu ≤≤)(;

(5) M
f

m
ff ttt ≤≤ ,

The superscripts m and M are associated with
the minimum and maximum values, respectively.

 The functioning of the system may be
characterized through the value of a specific
objective function ()ffff ttutytxJ),(),(),(. The

OCP consists in finding the control variables u that
met all the constraints and minimizes - or
maximizes - the objective function

(6) ()ffff
ttu

ttutytxJ
f

),(),(),(min
),(

.

3. IMPLEMENTATION OF THE
EVOLUTIONARY ALGORITHM

The implementation of the proposed EA for solving
an OCP is characterized first of all by the solution
coding.

The optimal solutions are searched in a specific
space using a time horizon that is [0, tf]. The time
discretization yields a sequence of n time moments,
usually equidistant (Faber et al., 2004), which cover
the time horizon:

(7) () fn
T

n tttttt == with;,,, 21 L

THE ANNALS OF “DUN ĂREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2017, VOL. 40, NO. 2, ISSN 2344-4738, ISSN-L 1221-454X

__

 32

The main unknown variables form together the
control sequence u corresponding to these time
moments, i.e. the so called control profile:

(8) () ;,,, 21 nuuuu L=

Hence, the solution of an OCP x may be coded by

(9) ()Tftux ,= or Tux = ,

according as the final time is free (unknown) or
fixed.

3.1. Options for the proposed EA

We propose, for the control profile determination,
an implementation of EA in which a number of
options has been made:

• The population of each generation has µ
individuals, which is a parameter of the
algorithm; in our simulations we set µ=60;

• The population's individuals are set in
increasing or decreasing order according as
the objective function is minimized or
maximized. Hence, the best solution is in the
first position.

• The selection uses the Stochastic Universal
Sampling.

• Instead of fitness values, the rank-based
selection with linear-ranking is used.

• The number of offsprings generated at each
generation, denoted by λ, is a parameter of
the algorithm; in our simulations we set λ
=30.

• Each chromosome of the selection list
together with the best individual of the
population is subject to the crossover
operator in order to generate a single
offspring.

• The crossover in a single point has been
initially adopted.

• The offsprings replace the last λ individuals
of the current population in order to obtain
the next generation. The obtained population
is reordered according the objective function
values.

These options characterize a very simple version of
an EA used to solve OCPs. The efficiency of this
version will be analyzed in the sequel.

3.2. Generation of the initial population

Because EA is a population based metaheuristic, it
has a natural exploration character. However this
character must be ensured through an initial
population well spread in the searching space. It is a
crucial phase that has as main target the
diversification.

A realistic solution is to adopt a random population
uniformly distributed in the searching space. This
technique is well-known for the global optimization
algorithms. It is characterized by some elements:

The initial population P0 has N individuals
(solutions). Each solution 0Pxi ∈ , Ni ,...,1= is a

vector with M elementsijx , Mj ,...,1= . Each

element ijx is placed between two limits

(10) jijj uxl ≤≤ ,

where l j and uj are respectively the lower bound and
upper bound. Every element is randomly generated
using the equation:

(11)
MjNi

lurandlx jjjij

,...,1 ;,...,1

),(]1 ,0[

==

−⋅+=

where]1 ,0[rand is a value uniformly distributed in
the interval [0, 1]. If l j and uj are not very well
defined, then these bounds must be largely
initialized such as the research space would include
the optimal solution.

3.3. Mutation for real encoding

In this paper, for the implementation of the EA we
adopted two strategies. Firstly we chose a very
simple mutation operator having the advantage of a
simple implementation and short execution time.
Secondly, we adopted a more complicated but more
efficient mutation operator.

Non-uniform mutation:

This operator is inspired from „simulated
annealing” method and uses the following scheme:

 chromosome: offspring:

where:

(12)






=−∆+
=−∆+=+

1 if),(

0 if),(1

aLBxtx

axUBtx
x

t
i

t
i

t
i

t
it

i

()t
M

t
i

t xxx KK1 ()111
1

+++ t
M

t
i

t xxx KK

THE ANNALS OF “DUN ĂREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2017, VOL. 40, NO. 2, ISSN 2344-4738, ISSN-L 1221-454X

__

 33

where:

• a ϵ {0, 1}is randomly chosen value;

• UB and LB are respectively the upper and

lower bound of the variable tix variation

range:

• UBxLB t
i ≤≤

•),(yt∆ is a function that returns a value

between 0 and y, which tends to zero as t is
approaching T. Many works use the next
function:

(13)
















−⋅=∆







 −
b

T

t

ryyt
1

1),(

where:

� r is a real value chosen uniformly in the

interval [0, 1]

� t is the current generation number

� T is the number of generations

� b is a parameter of the function

As we mentioned, it holds:

(14) 0),(lim =∆
→

yt
Tt

.

This means that there is a fine tuning of the
variation introduced by the mutation, especially at
the end of the searching process when the algorithm
must converge to the optimal solution.

3.4. The linear BLX-α crossover

The crossover in a single point has been initially
adopted. Because the algorithm's efficiency has not
been always acceptable, we have used another
operator as well.

For one of the problem treated below, another type
of crossover operator was applied: Linear BLX-α
(Linear Blend Alpha Crossover). This is described
in (Siarry 2016)

If x and y are two points in Rn representing two
individuals belonging to solutions' population, an
individual z can be produced by applying Linear
BLX-α crossover. This one is defined below:

(15) z =x + (y − x)U(−α, 1 + α)

where U(−α, 1 + α) is a random value uniformly
distributed in the interval [-α, 1+α]. If L is the
length of the segment [x, y], then the point z will

belong to a segment, whose length is L(1+2 α) and
is centered on the segment [x, y],

4. CASE STUDY: LINEAR QUADRATIC
PROBLEM

4.1. Problem statement

We present hereafter a problem involving a discrete
time system that is known as being the Linear
Quadratic Problem (LQP). We chose this well-
known problem because it has a theoretic solution
that can be compared with the solution found by the
EA. The statement and the instances of the problem
are taken over the work (Michalewicz 1992), where
the solution is obtained with a peculiar GA, whose
efficiency is not well proved in the paper. Our
objective is not to propose a better algorithm
producing better solutions, but to emphasize the
importance of the mutation operator.

Let us consider the discrete system:

(16) kkk ubxax ⋅+⋅=+1 , 1,,1 ,0 −= Nk L

where the initial state is: 0x (given value);

The optimum criterion is:

(17) J*= ()







⋅+⋅+⋅ ∑

−

=−=

1

0

222

1,,1 ,0 ,
 min

N

k
kkN

Nku
urxsxq

k L

,

where the values rsqba ,,,, are given..

The theoretic solution of LQP is precised below:

(18) 2
00

* xKJ ⋅=

where Kk is the solution of the algebraic Riccati
equation:

(19) s
Kbr

K
arK

k

k
k +

⋅+
⋅⋅=

+

+

1
2

12 ; with qKN =

LQP has been solved for 4 instances of the problem
having N=45. These instances are described in table
1.

Table 1. Instances of LQP

problem A a=1; b=1; q=1; r=1; s=1;
x0=6.4

problem B a=0.01; b=1; q=1; r=1; s=1;
x0=100

problem C a=1; b=1; q=1; r=10; s=1;
x0=100

problem D a=0.7; b=1.5; q=2; r=0.5;
s=1.2; x0=100

THE ANNALS OF “DUN ĂREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2017, VOL. 40, NO. 2, ISSN 2344-4738, ISSN-L 1221-454X

__

 34

4.2. Simulation results with the initial version of EA

The EA was implemented using the MATLAB
language according the characteristics mentioned in
section 1, even with a better crossover operator that
engenders the arithmetic crossover as a particular
case. We recall hereafter the main characteristics of
the EA:

• Selection achieved with Stochastic Universal
Sampling using rank-based selection with
linear-ranking.

• Replacement of individuals with offsprings
produced by the crossover operator and
placed in the last λ positions of the
population (with N individuals).

• The crossover operator is BLX-0.5; it
produces a single offspring.

• The mutation is non-uniform on a single
gene that is randomly chosen.

• The main parameters are: N=50; number of
genes (ngene) =45; xmin=-5; xmax=5;
selection pressure=1.8.

Using the equations (8) and (9), it holds:

(20) K0=1.61803; J*=66.2747

In the first simulation series the EA was carried out
30 times because its stochastic character. The
typical result is characterized by the following
values:

(21) gen=10000; J*=66.981; Neval =301850;

where Neval is the number of objective function
evaluations. In other words, a good control profile
is obtained that leads to a value of J grater then the
optimal value with only 1%, but after the evolution
along 10000 generations and a huge number of
objective function evaluations. This version of EA
converges for all the executions but very slowly.

Therefore, we have adopted another mutation
operator that would allow a more rigorous
variation's control for the chromosome genes'
values (),(yt∆). This variation has a random

character. In the case of non-uniform mutation,
there is a control of the variation's variance (as
random variable), but this is monotonically
decreasing. That is way we need a mutation
operator that would adapt this variance along the
EA execution.

The book (Kruse 2016) presents in a comprehensive
way the Adaptive Evolution Strategy that allows the
global adaptive control of the variance as an
alternative to the local adaptive control.

4.3. Mutation with adaptive Gaussian standard
deviation

In the book (Siarry 2016), there is a different point
of view in comparison with the work (Kruse 2016)
concerning the implementation of the standard
deviation adaptation. Inspired by the first work, we
propose the mutation operator that adapts the
standard deviation as it is described in Table 2. The
parameter θ, 10 << θ , is the threshold from which
the standard deviation is modified at every M steps.
A consecrated value is θ=1/5, when one can say that
the "one fifth rule" is applied. Either the exploration
or the exploitation is enforced respectively by the
increasing or decreasing of the standard deviation,
according as the success rate is greater than or less
than θ. The mutation is applied to the vector x. The
objective function is already calculated in the
general algorithm and stored in the vector fc, which
is meant for all the parents and offspring. This value
is referred in line #9 by fc(ix). The variable fcfm
(objective function before mutation) will store this
value. The objective function value is updated in
line #17, after the mutation is carried on. The call
EvalFitness(x) evaluates the objective function for
the chromosome x.

Table 2. Mutation with adaptive Gaussian
standard deviation

Mutation_global_adaptive_version(x, σ)
1 start
2 if cm≥ M then /* cm= mutation counter; */
3 rs=cms/cm;

 /* cms=success mutation counter;
 rs=success rate */

4 if rs < θ then σ← σ·a; ■
5 if rs > θ then σ← σ/a; ■
6 cm ←0;
7 cms ←0;
8 ■
9 fcfm←fc(ix);

/* ix =index of the chromosome x */
10 for i=1,..., ngene

 /* ngene = chromosome's dimension*/
11 ∆← Gaussian random variable N(0,σ)
12 xi← xi + ∆;
13 xi← max{xi, LBi};

 /* LBi: lower bound of element i */
14 xi← min{xi, UBi};

 /* UBi: upper bound of element i */
15 ■
16 cm←cm+1; /*counts mutation */
17 ...fc(ix)←EvalFitness(x);
18 if fc(ix) < fcfm then
19 cms← cms+1;

 /* counts success mutation*/
20 ■
21 stop

THE ANNALS OF “DUN ĂREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2017, VOL. 40, NO. 2, ISSN 2344-4738, ISSN-L 1221-454X

__

 35

Control profile State evolution Problem

A
a=1;b=1
q=1; r=1; s=1;
x0=6.4;
J*=66.27;
JEA=66.93;
Neval=19483;
relative error=
=0.01%

B
a=0.01; b=1; q=1;
r=1; s=1;
x0=100;
J*=10000.5;
JEA=10000.6;
Neval=6541
error =0.1

C
a=1; b=1; q=1;
r=10; s=1;
x0=100;
J*=37015.6;
JEA=37015.9;
Neval=14622;
error =0.3

D
a=0.7; b=1.5;
q=2; r=0.5; s=1.2;
x0=100;
J*=12929.2;
JEA=12929.8;
Neval=13768;
error =0.6;

Fig.1 Typical results of the EA using mutation with adaptive Gaussian standard deviation

THE ANNALS OF “DUN ĂREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2017, VOL. 40, NO. 2, ISSN 2344-4738, ISSN-L 1221-454X

ELECTROTECHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS
__
According to the book (Siarry 2016), one can adopt
M=ngene - the research space being Rngene -, meanwhile the
work (Kruse 2016) is recommending a more consistent
value, M=λ·k. The second option achieves the adaptation of
the standard deviation roughly after k generations. In the
proposed EA, the first option was implemented because it
gave very good results. The Table 2 describes this version of
the mutation operator. The parameter a is place in the
interval (0.85,1).

4.4. Simulation results with the modified version of EA

In a second simulation series, the modified EA was carried
out 30 times for each instance of the problem. For each of
them the results of its typical execution are depicted in Fig.
1. The value of JEA is the best value of the objective function
found by the EA.

This time, the typical executions are all convergent as well,
but much more efficient than those of the original version.
General speaking, Neval is 15-20 times smaller. The optimal
value of the objective function (J*) is practically reached for
all the four instances of LQP.

The value of error is equal to the difference JEA- J*. The
results given in fig. 1 are particularly good and prove a very
good behavior of the modified EA.

5. CONCLUSION

An EA was proposed in this paper to solve OCPs. At the
beginning, in the first stage of our work, a very simple
version of the EA was implemented that is using a non-
uniform mutation operator. The algorithm has been tested
by solving four instances of LQP. This problem has been
chosen as a case study because the theoretic optimal
solution is already known and a comparison can be made.
Despite the good quality of the found solutions, the EA has
a small convergence speed.

The mutation operator changes the value of genes encoding
a solution. The variation of these values has a random
character. In the case of non-uniform mutation, the
variation's variance (as random variable) is monotonically
decreasing in accordance with the convergence process.
That is way we need a mutation operator that would adapt
this variance all along the EA execution. In the second stage
of our work, a new version of the EA was implemented that
is using an adaptive Gaussian standard deviation of this
random variation.

The new EA outperformed the first version of the AE by
improving the convergence speed that is 15-20 times
smaller. Consequently the number of objective function
evaluations is decreasing to the same extent.

As a general conclusion, this second version of the proposed
EA can be used to solve other OCPs as well, but some
parameters must be updated. A great deal of attention must
be given to the choice of the threshold parameter θ because
some authors have remarked that the value 1/5 is too
optimistic in certain cases.

6. REFERENCES

Abraham, A.; L. Jain, R. Goldberg, (2005). Evolutionary
Multiobjective Optimization - Theoretical Advances
and Applications, Springer ISBN 1-85233-787-7.

Chiang, P-K., Willems, P., 2015. Combine Evolutionary
Optimization with Model Predictive Control in Real-
time Flood Control of a River System. Water Resour
Manage, 29: 2527–2542

Faber, R.; T. Jockenhövelb, G. Tsatsaronis, 2004.Dynamic
optimization with simulated annealing, Computers and
Chemical Engineering 29 273–290

Fogel, D.B., (1994); Applying EvolutionaryProgramming to
Selected Control Problems. Computers Math. Applic.
Vol. 27, No. 11, pp. 89-104, Pergamon.

Kruse, R.; C. Borgelt, C. Braune, S. Mostaghim, M.
Steinbrecher; (2016) Computational Intelligence - A
Methodological Introduction, second edition, Springer.

Michalewicz, Z; Janikow, C.; Krawczyk, J.; 1992; A
Modified Genetic Algorithm for Optimal Control
Problems; Computers Math. Applic. Vol. 23, No. 12,
pp. 83-94

Mînzu, V.; (2017). Optimal Control Using Particle Swarm
Optimization, The 5th IEEEE International Symposium
on Electrical and Electronics Engineering, 20-22
October, Galati, Romania

Onwubolu, G.; B.V. Babu, (2004). New Optimization
Techniques in Engineering, Springer, ISSN 1434-9922.

Qian, F., et al., 2012. Novel hybrid evolutionary algorithm
for dynamic optimization problems and its application
in an ethylene oxide hydration reactor. Ind. Eng. Chem.
Res. 51(49) 15974-15985.

 Siarry Patrick, (Ed), 2016; METAHEURISTICS , Springer,
ISBN 978-3-319-45401-6, 2014, ISBN 978-3-319-
45403-0 (eBook).

Talbi, E.G.; METAHEURISTICS- From Design to
Implementation, ISBN 978-0-470-27858-1, WILEY,
2009.

Valadi; J. and P. Siarry -editors, Applications of
Metaheuristics in Process Engineering, ISBN 978-3-
319-06507-6, Springer, 2014.

Yamashita, Y., Shimas, M., (1997). Numerical
computational method using genetic algorithm for the
optimal control problem with terminal constraints and
free parameters. Nonlinear Analysis, Theory, Methods
& Application, Vol. 30, No. 4, pp. 2285-2290.

