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Abstract: Optimal Control Problems involve dynamic systems that are subject to 
algebraic or differential constraints and whose evolution may be characterized by a 
performance index. Such a problem can be solved by the well known Evolutionary 
Algorithms. This paper proposes an evolutionary algorithm having usual characteristics 
concerning the mutation and crossover operators. Generally speaking, the EA gave good 
results and the convergence was acceptable. But for a specific problem instance, the 
evolutionary algorithm underperformed on the first simulation series. Therefore, the 
paper proposes a new mutation operator having adaptive Gaussian standard deviation of 
genes' values variation.  
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1. INTRODUCTION  

An Optimal Control Problem (OCP) involves a 
dynamic system whose model is supposed to be 
known. Its evolution is subject to algebraic or 
differential constraints and initial conditions. This 
evolution may be characterized by a performance 
index that quantifies the fulfillment of the control 
objective.  

This work proposes an evolutionary algorithm (EA) 
for solving OCPs. The genetic algorithm (GA) is a 
particular case of EAs that uses a special encoding 
of solutions (usually a binary encoding), which is 
related to the notions of genotype and phenotype. 
Because such an encoding is not needed in our case, 
EA is a natural option for solving an OCP. 

There are many works that deal with EAs and GAs 
in a general manner, among which we recall the 
books (Kruse et all., 2016), (Siarry Patrick (Ed), 
2016;), (Talbi E.G.,2009), (Onwubolu, 2004) and 
the paper (Abraham et all.,2005). Other group of 
works deals with the solving of OCPs using 
metaheuristic algorithms including EA: (Chiang, 
2015), (Fogel,1994), (Qian, 2012), (Valadi, 2014), 
(Minzu, 2017). 
The implementation of the algebraic and differential 
constraints within metaheuristics is a very important 
topic of the papers (Faber et al., 2004), 
(Michalewicz et al., 1992) and (Yamashita and 
Shimas, 1997). 

The section 2 describes in a general manner the 
model of an OCP with its elements: the process 
model, initial conditions, algebraic equality, path 
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constraints, terminal equality constraints and bound 
constraints. The process model is considered as 
being a discrete recursive equation like in section 4, 
which treats a case study. 

Section 3 is devoted to the description of the EA. 
The general structure of this algorithm being 
already well-known, this section gives the details 
and characteristics that particularize the proposed 
algorithm: the solutions' encoding, generation of the 
initial population, mutation operator, crossover 
operator and the other specific options for an EA. 

A case study is presented in section 4, namely the 
well-known Linear Quadratic Problem (LQP), the 
discrete version. We chose this OCP as subject of 
our case study, because its theoretic optimal 
solution is known and can be compared with the 
solution given by the EA. In the first stage of our 
study, a simple MATLAB version of the proposed 
EA has been implemented using a non-uniform 
mutation operator and a single-point crossover 
operator. Four LQP instances defined in the paper 
made the object of the proposed EA. For each 
instance, the algorithm has been carried out 30 
times due to its stochastic nature. Generally 
speaking, the EA has converged to good solutions, 
but very slowly. A huge number of objective 
function evaluations have been made, fact that 
decreases the efficiency of the proposed EA. That is 
why, in the second stage of our study, a new version 
of the proposed EA has been implemented using a 
mutation operator with adaptive Gaussian standard 
deviation. In this way, the genes' values variation is 
well controlled along the algorithm execution. This 
new version of the EA gives very good results. The 
convergence speed increases and the objective 
function evaluations' number is 15-20 times 
smaller. 

Some conclusions are drawn in section 5 that 
emphasis the efficiency of the proposed EA. 

2. MODEL OF OPTIMAL CONTROL PROBLEM 

An OCP has some constitutive elements that are 
recalled hereafter. Certain mathematical details are 
avoided in order to simplify the presentations. The 
statement of an OCP has as a main element the 
model of a dynamic system. This one is modeled by 
a general differential equation or a discrete 
recursive equation 

(1) kkk uBxAx ⋅+⋅=+1 , 

(2) yk=C·xk 

where A, B and C are matrices with appropriate 
dimensions. 

The variables used in this equation are as follows: 

� t: the continuous or discrete time, ∈t R or 
Z; 

� )(tx : the vector of state variables; 

� )(ty : the vector of algebraic variables 

(usually system output variables). 

� )(tu : the vector of control variables. 

The OCP is also defined by some equality and 
inequality constraints listed below: 

• initial conditions, 

• algebraic equality, 

• path constraints, 

• terminal equality constraints (tf is the final 
time)  

• and bound constraints: 

(3) Mm xtxx ≤≤ )( ; 

(4) Mm utuu ≤≤ )( ; 

(5)  M
f

m
ff ttt ≤≤ , 

The superscripts m and M are associated with 
the minimum and maximum values, respectively. 

 The functioning of the system may be 
characterized through the value of a specific 
objective function ( )ffff ttutytxJ ),(),(),( . The 

OCP consists in finding the control variables u that 
met all the constraints and minimizes - or 
maximizes - the objective function  

(6) ( )ffff
ttu

ttutytxJ
f

),(),(),(min
),(

. 

3. IMPLEMENTATION OF THE 
EVOLUTIONARY ALGORITHM  

The implementation of the proposed EA for solving 
an OCP is characterized first of all by the solution 
coding. 

The optimal solutions are searched in a specific 
space using a time horizon that is [0, tf]. The time 
discretization yields a sequence of n time moments, 
usually equidistant (Faber et al., 2004), which cover 
the time horizon: 

(7) ( ) fn
T

n tttttt ==    with;,,, 21 L  
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The main unknown variables form together the 
control sequence u corresponding to these time 
moments, i.e. the so called control profile: 

(8) ( )  ;,,, 21 nuuuu L=  

Hence, the solution of an OCP x may be coded by  

(9) ( )Tftux ,=  or Tux = , 

according as the final time is free (unknown) or 
fixed. 

3.1. Options for the proposed EA 

We propose, for the control profile determination, 
an implementation of EA in which a number of 
options has been made: 

• The population of each generation has µ 
individuals, which is a parameter of the 
algorithm; in our simulations we set µ=60; 

• The population's individuals are set in 
increasing or decreasing order according as 
the objective function is minimized or 
maximized. Hence, the best solution is in the 
first position. 

• The selection uses the Stochastic Universal 
Sampling. 

• Instead of fitness values, the rank-based 
selection with linear-ranking is used. 

• The number of offsprings generated at each 
generation, denoted by λ, is a parameter of 
the algorithm; in our simulations we set λ 
=30. 

• Each chromosome of the selection list 
together with the best individual of the 
population is subject to the crossover 
operator in order to generate a single 
offspring. 

• The crossover in a single point has been 
initially adopted. 

• The offsprings replace the last λ individuals 
of the current population in order to obtain 
the next generation. The obtained population 
is reordered according the objective function 
values. 

These options characterize a very simple version of 
an EA used to solve OCPs. The efficiency of this 
version will be analyzed in the sequel. 

3.2. Generation of the initial population 

Because EA is a population based metaheuristic, it 
has a natural exploration character. However this 
character must be ensured through an initial 
population well spread in the searching space. It is a 
crucial phase that has as main target the 
diversification. 

A realistic solution is to adopt a random population 
uniformly distributed in the searching space. This 
technique is well-known for the global optimization 
algorithms. It is characterized by some elements: 

The initial population P0 has N individuals 
(solutions). Each solution 0Pxi ∈ , Ni ,...,1=  is a 

vector with M elementsijx , Mj ,...,1= . Each 

element ijx  is placed between two limits 

(10) jijj uxl ≤≤ , 

where l j and uj are respectively the lower bound and 
upper bound. Every element is randomly generated 
using the equation: 

(11) 
MjNi

lurandlx jjjij

,...,1 ;,...,1 

 ),(]1 ,0[ 

==

−⋅+=
 

where ]1 ,0[ rand  is a value uniformly distributed in 
the interval [0, 1]. If l j and uj are not very well 
defined, then these bounds must be largely 
initialized such as the research space would include 
the optimal solution. 

3.3. Mutation for real encoding 

In this paper, for the implementation of the EA we 
adopted two strategies. Firstly we chose a very 
simple mutation operator having the advantage of a 
simple implementation and short execution time. 
Secondly, we adopted a more complicated but more 
efficient mutation operator. 

Non-uniform mutation: 

This operator is inspired from „simulated 
annealing” method and uses the following scheme: 

                chromosome:                 offspring: 

 

where: 

(12) 






=−∆+
=−∆+=+
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where: 

•  a ϵ {0, 1}is randomly chosen value; 

• UB and LB are respectively the upper and 

lower bound of the variable tix  variation 

range: 

• UBxLB t
i ≤≤  

• ),( yt∆  is a function that returns a value 

between 0 and y, which tends to zero as t is 
approaching T. Many works use the next 
function: 

(13) 
















−⋅=∆







 −
b

T

t

ryyt
1

1),(  

where: 

� r is a real value chosen uniformly in the 

interval [0, 1] 

� t is the current generation number 

� T is the number of generations 

� b is a parameter of the function 

As we mentioned, it holds: 

(14) 0),(lim =∆
→

yt
Tt

. 

This means that there is a fine tuning of the 
variation introduced by the mutation, especially at 
the end of the searching process when the algorithm 
must converge to the optimal solution. 

3.4. The linear BLX-α crossover 

The crossover in a single point has been initially 
adopted. Because the algorithm's efficiency has not 
been always acceptable, we have used another 
operator as well.  

For one of the problem treated below, another type 
of crossover operator was applied: Linear BLX-α 
(Linear Blend Alpha Crossover). This is described 
in (Siarry 2016)  

If x and y are two points in Rn representing two 
individuals belonging to solutions' population, an 
individual z can be produced by applying Linear 
BLX-α crossover. This one is defined below: 

(15) z =x + (y − x)U(−α, 1 + α) 

where U(−α, 1 + α) is a random value uniformly 
distributed in the interval [-α, 1+α]. If L is the 
length of the segment [x, y], then the point z will 

belong to a segment, whose length is L(1+2 α) and 
is centered on the segment [x, y], 

4. CASE STUDY: LINEAR QUADRATIC 
PROBLEM 

4.1. Problem statement 

We present hereafter a problem involving a discrete 
time system that is known as being the Linear 
Quadratic Problem (LQP). We chose this well-
known problem because it has a theoretic solution 
that can be compared with the solution found by the 
EA. The statement and the instances of the problem 
are taken over the work (Michalewicz 1992), where 
the solution is obtained with a peculiar GA, whose 
efficiency is not well proved in the paper. Our 
objective is not to propose a better algorithm 
producing better solutions, but to emphasize the 
importance of the mutation operator. 

Let us consider the discrete system: 

(16) kkk ubxax ⋅+⋅=+1 , 1,,1 ,0 −= Nk L  

where the initial state is: 0x  (given value); 

The optimum criterion is: 

(17) J*= ( )







⋅+⋅+⋅ ∑

−

=−=

1

0

222

1,,1 ,0 ,
 min

N

k
kkN

Nku
urxsxq

k L

, 

where the values rsqba ,,,,  are given.. 

The theoretic solution of LQP is precised below: 

(18) 2
00

* xKJ ⋅=  

where Kk is the solution of the algebraic Riccati 
equation: 

(19) s
Kbr

K
arK

k

k
k +

⋅+
⋅⋅=

+

+

1
2

12 ; with qKN =  

LQP has been solved for 4 instances of the problem 
having N=45. These instances are described in table 
1. 

Table 1. Instances of LQP 

problem A a=1; b=1; q=1; r=1; s=1; 
x0=6.4 

problem B a=0.01; b=1; q=1; r=1; s=1; 
x0=100  

problem C a=1; b=1; q=1; r=10; s=1; 
x0=100 

problem D a=0.7; b=1.5; q=2; r=0.5; 
s=1.2; x0=100 

 



THE ANNALS OF “DUN ĂREA DE JOS” UNIVERSITY OF GALATI 
FASCICLE III, 2017, VOL. 40, NO. 2, ISSN 2344-4738, ISSN-L 1221-454X 

__________________________________________________________________________________________ 

 34 

4.2. Simulation results with the initial version of EA 

The EA was implemented using the MATLAB 
language according the characteristics mentioned in 
section 1, even with a better crossover operator that 
engenders the arithmetic crossover as a particular 
case. We recall hereafter the main characteristics of 
the EA: 

• Selection achieved with Stochastic Universal 
Sampling using rank-based selection with 
linear-ranking. 

• Replacement of individuals with offsprings 
produced by the crossover operator and 
placed in the last λ positions of the 
population (with N individuals). 

• The crossover operator is BLX-0.5; it 
produces a single offspring. 

• The mutation is non-uniform on a single 
gene that is randomly chosen. 

• The main parameters are:  N=50; number of 
genes (ngene) =45; xmin=-5; xmax=5; 
selection pressure=1.8. 

Using the equations (8) and (9), it holds: 

(20) K0=1.61803; J*=66.2747 

In the first simulation series the EA was carried out 
30 times because its stochastic character. The 
typical result is characterized by the following 
values: 

(21) gen=10000;  J*=66.981; Neval =301850; 

where Neval is the number of objective function 
evaluations. In other words, a good control profile 
is obtained that leads to a value of J grater then the 
optimal value with only 1%, but after the evolution 
along 10000 generations and a huge number of 
objective function evaluations. This version of EA 
converges for all the executions but very slowly.  

Therefore, we have adopted another mutation 
operator that would allow a more rigorous 
variation's control for the chromosome genes' 
values ( ),( yt∆ ). This variation has a random 

character. In the case of non-uniform mutation, 
there is a control of the variation's variance (as 
random variable), but this is monotonically 
decreasing. That is way we need a mutation 
operator that would adapt this variance along the 
EA execution. 

The book (Kruse 2016) presents in a comprehensive 
way the Adaptive Evolution Strategy that allows the 
global adaptive control of the variance as an 
alternative to the local adaptive control. 

4.3. Mutation with adaptive Gaussian standard 
deviation 

In the book (Siarry 2016), there is a different point 
of view in comparison with the work (Kruse 2016) 
concerning the implementation of the standard 
deviation adaptation. Inspired by the first work, we 
propose the mutation operator that adapts the 
standard deviation as it is described in Table 2. The 
parameter θ, 10 << θ , is the threshold from which 
the standard deviation is modified at every M steps. 
A consecrated value is θ=1/5, when one can say that 
the "one fifth rule" is applied. Either the exploration 
or the exploitation is enforced respectively by the 
increasing or decreasing of the standard deviation, 
according as the success rate is greater than or less 
than θ. The mutation is applied to the vector x. The 
objective function is already calculated in the 
general algorithm and stored in the vector fc, which 
is meant for all the parents and offspring. This value 
is referred in line #9 by fc(ix). The variable fcfm 
(objective function before mutation) will store this 
value. The objective function value is updated in 
line #17, after the mutation is carried on. The call 
EvalFitness(x) evaluates the objective function for 
the chromosome x. 

Table 2. Mutation with adaptive Gaussian 
standard deviation 

Mutation_global_adaptive_version(x, σ) 
1 start 
2    if cm≥ M then /* cm= mutation counter; */ 
3          rs=cms/cm; 

        /* cms=success mutation counter; 
        rs=success rate */ 

4          if rs < θ then σ← σ·a; ■ 
5          if rs > θ then σ← σ/a; ■ 
6          cm ←0; 
7          cms ←0; 
8    ■ 
9    fcfm←fc(ix);  

/* ix =index of the chromosome x */ 
10    for i=1,..., ngene         

       /* ngene = chromosome's dimension*/ 
11        ∆← Gaussian random variable N(0,σ) 
12        xi← xi + ∆; 
13        xi← max{xi, LBi}; 

       /* LBi: lower bound of element i */ 
14        xi← min{xi, UBi}; 

       /* UBi: upper bound of element i */ 
15    ■ 
16    cm←cm+1; /*counts mutation */ 
17 ...fc(ix)←EvalFitness(x); 
18    if fc(ix) < fcfm then  
19          cms← cms+1; 

         /* counts success mutation*/ 
20    ■ 
21 stop 
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Control profile State evolution Problem 

  

A 
a=1;b=1  
q=1; r=1; s=1; 
x0=6.4; 
J*=66.27; 
JEA=66.93; 
Neval=19483; 
relative error= 
=0.01% 

  

B 
a=0.01; b=1; q=1; 
r=1; s=1; 
x0=100; 
J*=10000.5; 
JEA=10000.6; 
Neval=6541 
error =0.1 

  

C 
a=1; b=1; q=1;  
r=10; s=1; 
x0=100; 
J*=37015.6; 
JEA=37015.9; 
Neval=14622; 
error =0.3 

  

D 
a=0.7; b=1.5;  
q=2; r=0.5; s=1.2; 
x0=100; 
J*=12929.2; 
JEA=12929.8; 
Neval=13768; 
error =0.6; 

Fig.1 Typical results of the EA using mutation with adaptive Gaussian standard deviation 
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According to the book (Siarry 2016), one can adopt 
M=ngene - the research space being Rngene -, meanwhile the 
work (Kruse 2016) is recommending a more consistent 
value, M=λ·k. The second option achieves the adaptation of 
the standard deviation roughly after k generations. In the 
proposed EA, the first option was implemented because it 
gave very good results. The Table 2 describes this version of 
the mutation operator. The parameter a is place in the 
interval (0.85,1). 

4.4. Simulation results with the modified version of EA 

In a second simulation series, the modified EA was carried 
out 30 times for each instance of the problem. For each of 
them the results of its typical execution are depicted in Fig. 
1. The value of JEA is the best value of the objective function 
found by the EA. 

This time, the typical executions are all convergent as well, 
but much more efficient than those of the original version. 
General speaking, Neval is 15-20 times smaller. The optimal 
value of the objective function (J*) is practically reached for 
all the four instances of LQP. 

The value of error is equal to the difference JEA- J*. The 
results given in fig. 1 are particularly good and prove a very 
good behavior of the modified EA. 

5. CONCLUSION 

An EA was proposed in this paper to solve OCPs. At the 
beginning, in the first stage of our work, a very simple 
version of the EA was implemented that is using a non-
uniform mutation operator. The algorithm has been tested 
by solving four instances of LQP. This problem has been 
chosen as a case study because the theoretic optimal 
solution is already known and a comparison can be made. 
Despite the good quality of the found solutions, the EA has 
a small convergence speed. 

The mutation operator changes the value of genes encoding 
a solution. The variation of these values has a random 
character. In the case of non-uniform mutation, the 
variation's variance (as random variable) is monotonically 
decreasing in accordance with the convergence process. 
That is way we need a mutation operator that would adapt 
this variance all along the EA execution. In the second stage 
of our work, a new version of the EA was implemented that 
is using an adaptive Gaussian standard deviation of this 
random variation. 

The new EA outperformed the first version of the AE by 
improving the convergence speed that is 15-20 times 
smaller. Consequently the number of objective function 
evaluations is decreasing to the same extent. 

As a general conclusion, this second version of the proposed 
EA can be used to solve other OCPs as well, but some 
parameters must be updated. A great deal of attention must 
be given to the choice of the threshold parameter θ because 
some authors have remarked that the value 1/5 is too 
optimistic in certain cases. 
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