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Abstract: Model Based Predictive Control (MBPC) is a control methodology which
uses a process model on-line in the control computer; this model is used for calculating
output predictions and optimizing control actions. The importance of the system model
has been generally recognized, but less attention has been paid to the role of the
disturbance model. In this paper the importance of the disturbance model is indicated
with respect to the EPSAC approach to MBPC. To illustrate this importance, an
example of this advanced control methodology applied to a typical mechatronic system
is presented, to compare the performances obtained by using different disturbance
models. It clearly shows the benefits of using an ‘intelligent’ disturbance model instead
of the ‘default’ model generally adopted in practice.
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1. INTRODUCTION

MODEL Based Predictive Control (MBPC) is
nowadays one of the most important control
strategies generously accepted in industry. This is
due to its capability to deal with multivariable and
non-linear processes, constraints and modeling
errors, as well as unusual dynamic behavior of
processes.

During the last decades, MBPC has become an
important, distinctive part of control theory and
application. A great interest has been shown for this
methodology resulting in many excellent reviews and
books [1-6].

The MBPC methodology is based on a model of the
process, which is used for calculating the prediction
of the controlled variables. It is characterized by:

 explicit on-line use of the process model to
forecast the process output at future time
instants;

 calculation of an optimal control strategy
based on the minimization of one or more cost
functions, possibly including constraints on
the process variables.

The initial predictive algorithms were utilizing linear
models and a large number of algorithms have
appeared in the literature [7-10], mainly differing in:

 the type of model used to represent the
process and its disturbances;
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 the cost function(s) to be minimized, with or
without constraints.

Taking into account that the PID controller is still the
bread and butter of the instrumentation engineer in
everyday industrial practice, it is important to realize
that MBPC requires the extra-effort of identifying a
process model. This involves a model for the
dynamic system itself as well as a model for the
disturbances. While PID generally deals with control
loops situated at the lower level of the control
pyramid, the more advanced MBPC covers the
optimization level and it has an important role to play
in future process and production industries.

The purpose of this paper is to emphasize the role of
the disturbance model in the EPSAC approach to
MBPC [9],[11],[12]. This role has generally been
sub-estimated.

The content of this paper is as follows. The 2nd

section describes the MBPC methodology used. The
3rd section presents in detail the role of the
disturbance model and its importance, with 2 design
solutions: the default design and the optimized
design. A comparison between these 2 designs and
the classical PID controller is presented in the 4th

section, using a typical mechatronic control example.

2. MBPC METHODOLOGY

Being one of the earlier predictive controllers,
EPSAC [9],[11],[12] is based on a generic process
model:

(1) ( ) ( ) ( )y t x t n t= +

which is illustrated in Fig. 1, with:
- y(t):  (measured) process output;
- u(t):  process input;
- x(t):  model output;
-   n(t): process (y) vs model (x)  disturbance;
-   t: discrete-time index.

Fig.1. Generic Process Model

The disturbance n(t) includes the effects in the
measured output y(t) which do not come from the
model input u(t) via the available model. These non-
measurable disturbances have a stochastic character
with non-zero average value, which can be modelled
by a coloured noise process:

(2) 
1

1

( )( ) ( )
( )

C qn t e t
D q

−

−=

with:
- e(t): uncorrelated (white) noise with zero mean

value;
-  C(q-1), D(q-1): monic polynomials in the

backward shift operator q-1 of orders nc and nd.

This filter C(q-1)/D(q-1) is considered to be a design
filter. It plays an important role in MBPC (which has
generally not been recognized appropriately). It will
be further presented in detail in Section III.

A. Prediction Algorithm

The model output x(t) represents the effect of the
control input u(t) on the process output y(t) and is
also a non-measurable signal, and the relationship
between u(t) and x(t) is given by the generic dynamic
system model:

(3) [ ]( ) ( 1), ( 2), , ( 1), ( 2),x t f x t x t u t u t= − − − −L L

The fundamental step in MBPC methodology
consists in prediction of the process output y(t+k) at
time instant t, indicated by { }2( | ), 1y t k t k N+ = K ,
over the prediction horizon N2, and based on:

- measurements available at sampling time
instant t: { }( ), ( 1), , ( 1), ( 2),y t y t u t u t− − −L L ;

- future values of the input signal (postulated at
time t): { }( | ), ( 1 | ),u t t u t t+ L .

Using the generic process model (1), the predicted
values of the output are:

(4) ( | ) ( | ) ( | )y t k t x t k t n t k t+ = + + +

Prediction of x(t+k|t) and of n(t+k|t) can be done
respectively by recursion of the process model (3)
and by using filtering techniques on the noise model
(2) [11],[12].

B. Control Algorithm

In EPSAC for linear models, the future response is
then considered as being the cumulative result of two
effects:

(5) base optimize( | ) ( | ) ( | )y t k t y t k t y t k t+ = + + +

The two contributions have the following origins:

base ( | )y t k t+ :
• effect of past control {u(t-1), u(t-2), ...}

(initial conditions at time t);

MODEL
u x

n
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• effect of a base future control scenario, called
base ( | ), 0u t k t k+ ≥ , which is defined a

priori; some ideas on how to choose ubase are
presented in [11],[12]; for linear systems the
choice is irrelevant, a simple choice being
{ }base ( | ) 0, 0u t k t k+ ≡ ≥ ;

• effect of future (predicted) disturbances
n(t+k|t).

 
 The component base ( | )y t k t+  can be easily obtained
using (2)(3)(4) taking ( | )baseu t k t+  as the model
input for (3).

optimize ( | )y t k t+ :
• effect of the optimizing future control actions

{ }( | ), ( 1| ), ( 1| )uu t t u t t u t N tδ δ δ+ + −K

with base( | ) ( | ) ( | )u t k t u t k t u t k tδ + = + − + .

Refer to Fig. 2 for the concepts of base and
optimizing controls. Notice that u(t+k|t) is
constrained to be constant from k=Nu on (and this is
realized by selecting ubase(t+k|t) constant from k=Nu

on and by imposing that δu(t+k|t) should be constant
from k=Nu on). The design parameter Nu is called the
control horizon (a well-known concept in MBPC-
literature).

u(t+k|t)
u

Nu =4

ubase(t+k|t)
δu(t+k|t)

time
current time tpast future

u(t+k|t)
u

Nu =4

ubase(t+k|t)
δu(t+k|t)δu(t+k|t)

time
current time tpast future

Fig.2. The EPSAC concept of base/optimizing
controls

From Fig. 2 it is obvious that the component
optimize ( | )y t k t+  is the cumulative effect of a series of

impulse inputs and a step input:
• an impulse with amplitude ( | )u t tδ  occurring

at time t, resulting in a contribution ( | )kh u t tδ
to the process output at time t+k  (k sampling
periods later);

• an impulse with amplitude ( 1 | )u t tδ +
occurring at time t+1, resulting in a
contribution 1 ( 1 | )kh u t tδ− +  to the predicted
process output at time t+k (k-1 sampling
periods later);

• etc;
• finally a step ( 1 | )uu t N tδ + −  at time

1−+ uNt , resulting in a contribution

1 ( 1| )
uk N ug u t N tδ− + + −  to the predicted

process output at time t+k.
The cumulative effect of all impulses and the step is:

(6)
optimize 1

1

( | ) ( | ) ( 1 | )

... ( 1 | )
u

k k

k N u

y t k t h u t t h u t t

g u t N t

δ δ

δ
−

− +

+ = + + +

+ + + −

The parameters 
21 2, ,... ,...k Ng g g g are the coefficients

of the unit step response of the system, i.e. the
response of the system for a stepwise change of the
input (with amplitude 1). The parameters

21 2, ,... ,...k Nh h h h  are the coefficients of the unit
impulse response of the system and can be easily
calculated from the step response coefficients and
vice versa: 1k k kh g g −= −  (and

0 -1 0 -1... ... 0h h g g= = = = = ≡ ).

Using (5) and (6), the key EPSAC-MBPC equation:

(7) = +Y Y GU

is obtained, where:

(8) 

[ ]
[ ]
[ ]

1 1 1 1

1 1 1

2 2 2 2

1 2
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1 1
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The controller output is then the result of minimizing
the cost function:

(9) 
2

1

2( ) [ ( | ) ( | )]
N

k N
V r t k t y t k t

=

= + − +∑U

with ( | )r t k t+ the desired reference trajectory and
the horizons N1, N2 being design parameters.

It is now straightforward to derive the solution. The
cost function (9) is a quadratic form in U, having the
following structure using the matrix notation from
(8) and with R defined similarly to Y:

(10) 1( ) [ ] [ ]V −= − − − −U R Y GU R Y GU

which leads after minimization w.r.t. U to the
optimal solution:
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(11) * 1[ ] ( )T T−= −U G G G R Y

The matrix GTG which has to be inverted has
dimension Nu x Nu. For the default case Nu=1, this
results in a simple scalar control law. Only the first
element )/( ttuδ in U* is required in order to compute
the actual control input applied to the process:

(12) base base( ) ( | ) ( | ) ( | ) (1)u t u t t u t t u t tδ ∗= + = +U

At the next sampling instant t+1, the whole
procedure is repeated taking into account the new
measurement information y(t+1). This is called the
principle of receding horizon control, another well-
known MBPC-concept.

3. ROLE OF THE DISTURBANCE MODEL

A. Default Design

As described in the beginning of section II, the
disturbance n(t) includes all effects in the measured
output y(t) which do not come from the model output
x(t). This is a fictitious (and thus non-measurable)
signal and it includes effects of process disturbances,
effects of other (un-modeled) process inputs,
measurement noise, model errors, etc.

The net effect of all these unknown disturbances has
a stochastic character with non-zero average value
and can be modeled by a colored noise process as in
(2):

1

1

( )( ) ( )
( )

C qn t e t
D q

−

−=

where the filter C(q-1)/D(q-1) is the disturbance
model.

It is common practice in the MBPC approach to
consider this filter as a design filter. It can be used -
in order to improve the quality of the control
performance - to “supply” information to the
controller about the type of disturbances that can be
expected.

The simplest way to design this filter is to neglect it,
thus make it equal to 1. In doing this, not any
information about the disturbance is given to the
controller! In fact, this results in ‘telling’ to the
MBPC-controller that the disturbance ( ) ( )n t e t= ,
defined as uncorrelated noise with zero-mean
average value. As a consequence then, the controller
will not take any specific action to remove non-zero-
mean disturbances. Usually, the disturbance has in

practice a non-zero average component, and a
steady-state control error can thus be expected as the
result of a permanent disturbance.

A better choice for the disturbance model might be:

(13) 11

1

1
1

)(
)(

−−

−

−
=

qqD
qC

resulting in a disturbance signal n(t) with non-zero
average value. In this case the MBPC-controller will
intrinsically take action to remove steady-state
errors, similar to the effect of the integrator in a PID-
type controller. Notice that (13) is the ‘default’
disturbance model that is usually applied in practice.

B. Intelligent Design

The ‘default’ disturbance model (13) still does not
supply too much useful information to the MBPC-
controller about the type of disturbance that is acting
upon the process. Its main advantage is that it is
easy-to-design (in fact, there is no design at all!).

In practical applications it is generally not difficult to
obtain supplementary information about the kind of
disturbance acting on the process. The disturbance
signal n(t) can be reconstructed using the generic
model (1): n(t)=y(t)-x(t), by measuring the process
output y and calculating the model output x with the
system model (3).

As n(t) has usually the character of a correlated
(colored) random signal, a useful and simple
approach is then to calculate its PSD using a spectral
analysis software, to detect around which frequency
(frequencies) the main disturbance energy is situated.

Assume as an example that the spectrum of these
disturbances leads to the conclusion that the main
energy is around a certain frequency f0. Then a more
‘intelligent’ filter C(q-1)/D(q-1) can be designed so
that it has a band-pass characteristic around this
frequency.

One way to design such filter is to use special digital
filter design techniques (e.g. a Butterworth-filter),
which may not be necessarily the simplest and most
straightforward approach. Moreover it will lead to a
rather complex disturbance filter, which introduces
some drawbacks from the MBPC-point-of-view
(drawbacks which are not further elaborated here).
Moreover, an accurate filter design is not really
necessary from the control point of view (which is
shown experimentally in Section IV).
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C. Disturbance Filter

An alternative simple, effective and straightforward
method to design the disturbance filter will now be
presented. In order to indicate the presence of
disturbance energy around the frequency f0 it is
sufficient to place one of the poles in its transfer
function near the unit circle (around frequency f0),
resulting in a peak in the frequency response:

(14) 
1

1 1

( ) (...)(...)
( ) (1 )(...)(...)j

C q
D q ae qα

−

− −=
−

with 02 sf Tα π=  and 1a ≅  (Ts is the sampling
period and 1a ≤  for stability).

Indeed, the filter frequency response is obtained
by:
• interpreting q as the complex variable ssTz e=
• replacing the Laplace-operator by

2s j j fω π= = .

This then leads to a factor 02 ( )1 sj f f Tae π −−  in (14),
which approaches zero around the frequency f=f0. As
this factor is in the denominator of expression (14), it
will result in a peak in the modulus of the frequency
response.

The design parameter a can be used:
• to create a sharp and high peak (by taking a

close to 1, e.g. a=0.99; in the limit it can be
equal to 1); this can be done in case the
location f0 of the main disturbance energy is
well-known;

• or to flatten-out the shape of the peak (by
making a somewhat smaller than 1, e.g.
a=0.90); this allows to express some
uncertainty about the exact location of the
disturbance energy.

In conclusion, an effective disturbance filter would
thus be:

(15) 
)1)(1)(1(

1
)(
)(

1111

1

−−−+−−

−

−−−
=

qaeqaeqqD
qC

jj αα

4. MECHATRONIC APPLICATION

The method can be applied to most kind of
processes. As an example we will focus on the field
of mechatronic systems, by applying it to a system
with typical transfer function:

(16) 
1 2

( )
(1 )(1 )

KH s
s s sτ τ

=
+ +

This transfer function is indeed typical for many
electro-mechanical position servos, the smaller time
constant τ1 representing the dynamics of the
electrical actuator, the bigger time-constant τ2

representing the dynamics of the mechanical load,
and the pure integrator being the link between
velocity and position. Practical examples are
manifold, e.g. a parabolic antenna positioning
system, a robot arm, an active suspension system, a
laser beam positioning system, …

As an example let us further focus on an antenna
position system, where the objective is to control the
antenna position towards a fixed target (setpoint is
zero) despite severe wind disturbances with main
energy around 2Hz.

The control loop block scheme is then given in Fig.3.
In the simulation the wind disturbance is generated
as band-pass filtered noise by means of a 4th-order
Butterworth filter with pass-band [1.75 … 2.25]Hz.
Also notice that the wind acts as a disturbing torque
on the mechanical structure, thus being an input-
disturbance. The sampling period was Ts=20ms.

Fig.3. Mechatronic Control Loop

As a reference for the MBPC-results, a PID-
controller has also been designed:

(17) 1( ) (1 )p d
i

R s K T s
T s

= + +

using a frequency-domain design software with the
specification: phase-margin=50°, and resulting in the
PID-parameters: Kp=22.7; Ti=0.60; Td=0.15.

The MBPC design parameters were Nu=1; N1=1;
N2=2 and the ‘intelligent’ disturbance filter was here
(with a=1 and α=2π*2*0.020=0.25):

(18)  
1

1 1 0.25 1 0.25 1

( ) 1
( ) (1 )(1 )(1 )j j

C q
D q q e q e q

−

− − + − − −=
− − −

The comparison between PID, default and intelligent
MBPC control performance is depicted in Figs.4-6
below.
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As expected, MBPC leads to better performance
compared to PID (at the expense of a more
complicated control algorithm). The default MBPC
reduces the disturbance amplitude to about 1/3
compared to PID (Figs.4/5). However, the ‘real’
improvement is obtained when switching from
default to intelligent MBPC (Figs.5/6).

Finally, it might also be interesting to evaluate and
compare the control energy required by the several
methods. In Figs.7-9 the controller output is depicted
for each method.

The conclusion is that the MBPC requires about 2-
times the effort of PID. However, the real interesting
thing is that no extra control effort is required by the
intelligent MBPC compared to the default MBPC!
(when comparing Figs. 8/9 in detail, the 2 signals are
however not identical).

5. CONCLUSIONS

The first and the most important step in applying
MBPC is the identification of the system model. The
second step is usually the tuning of the design
parameters (prediction and control horizons).

However, MBPC also gives the possibility to specify
a disturbance model, next to the system model. An
intelligent design of this disturbance model allows to
supply to the controller useful information regarding
the type of disturbance. In doing so, the controller
will be very effective in suppressing this disturbance.

A smart choice of this disturbance filter can then
result in:
• elimination of steady-state errors;
• but also in suppressing specific disturbances;
• and increasing robustness against modeling

errors.
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Fig. 4.   Process output y(t) for PID

Fig. 5.   Process output y(t) for default MBPC

Fig. 6.   Process output y(t) for intelligent MBPC

Fig. 7.   Controller output u(t) for PID

Fig. 8.   Controller output u(t) for default MBPC

Fig. 9.   Controller output u(t) for intelligent MBPC
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