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Abstract: In this paper we are studying the Cartesian space robot manipulator control problem by 
using Neural Networks (NN). Although NN compensation for model uncertainties has been 
traditionally carried out by modifying the joint torque/force of the robot, it is also possible to 
achieve the same objective by using the NN to modify other quantities of the controller. We 
present and evaluate four different NN controller designs to achieve disturbance rejection for an 
uncertain system. The design perspectives are dependent on the compensated position by NN. 
There are four quantities that can be compensated: torque t , force F, control input U and the input 
trajectory Xd. By defining a unified training signal all NN control schemes have the same goal of 
minimizing the same objective functions. We compare the four schemes in respect to their control 
performance and the efficiency of the NN designs, which is demonstrated via simulations. 
 
Keywords: Manipulation Robot, Neural Network, Cartesian Space Control, Jacobian. 

 
 
 
 

1. INTRODUCTION 
 
It is very common that manipulators are subject to 
structured and/or unstructured uncertainties. 
Structural uncertainty is characterised by having a 
correct dynamical model but with parameter 
uncertainty due to imprecision of the manipulator 
link properties, unknown loads, inaccuracies in the 
torque constants of the actuators, and so on. 
Unstructured uncertainty is characterised by 
unmodelled dynamics. Neural Network (NN) 
controllers are usually introduced to generate 
additional inputs to compensate for disturbances due 
to model uncertainties. 
 
It is clear that the higher the degree of nonlinearly 
exists in the uncertainties, the greater benefits neural 
networks (NNs) can contribute. Cartesian space 
control (Fu et al, 2000) is such a case due to the 
following facts: - the inverse dynamic in Cartesian 
space is more complicated than that in joint space; - 
the singularity of Jacobian (J) becomes problem at 
hand when positions in Cartesian space are calculated 
from joint measurements; - more uncertainties are 
present. Although NN compensation for model 

uncertainties has been traditionally carried out by 
modifying the joint torque/force of the robot, it is 
also possible to achieve the same objective by using 
the NN to modify other quantities of the controller, 
like the reference Cartesian trajectory.  
 
In this paper, we present and evaluate four different 
NN controller designs to achieve disturbance 
rejection for an uncertain robotic system. There are 
four locations that can be compensated: first, at 
torque level t , second, at force level F, third at 
control input level U and finally, compensation at 
input trajectory level Xd. By defining a unified 
training signal all NN control schemes have the same 
goal of minimizing the same objective functions. It 
has been shown (Moise et al, 2001) that, for the same 
neural network, the required internal signal level for 
the trajectory modification approach (fourth scheme) 
is much smaller. We compare the four schemes in 
respect to their control performance and the 
efficiency of the NN designs. We demonstrate via 
simulations that very significant performance 
improvement is obtainable by applying the NN 
compensation at the reference trajectory level instead 
of at the joint torque/force level. This approach is 
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very attractive in practice because it can be 
incorporated in the trajectory planner of any existing 
robot control system without having to alter the 
internal structure of the controller. 
 
 

2. ROBOT DYNAMIC EQUATIONS IN 
CARTESIAN SPACE 

 
The relationships between the joint space coordinates 
q  and the end effector Cartesian space coordinates 
X  are 

 
qqJX && )(= , qJqqJX &&&&&& += )(  (1)

where )(qJ  is the nn ×  nonsingular Jacobian 
matrix. Thus, the robot dynamic equation in joint 
space can be expressed as 

τ=τ++−− )(),())(()( 1 qqqhqJXqJqD f &&&&&&  (2)

 
Since the end points forces F  are related to the joint 
torques t  by (Fu et al (1987), Megahed 1993, 
Vukobratovic and Stokic 1989) 
 

FJ T=τ  (3)

 
we obtain the Cartesian space robot dynamic 
equation 
 

FXFXXhXXD f =++ )(*),(*)(* &&&&  (4)

where  
)()()()(* 11 qJqDqJD T −−= , 

XJJXDqqhJh T &&& 11 )(*),()(* −− −=  and 

)()(* 1 qJF f
T

f &τ= − .  

 
The robot dynamic equation (4) represents a highly 
nonlinear, coupled, multi-input multi-output system. 
In most practical cases, the functions )(qD , ),( qqh &  

and )(qfτ  are not exactly known, only the nominal 

estimates of )(̂qD  and ),(̂ qqh &  are available for 
controller design. For simplicity, )(** XDD = , 

),(** XXhh &= , )(** XFF ff
&=  are used later 

on. 
 
 

3. COMPUTED TORQUE CONTROL IN 
CARTESIAN SPACE 

 
When using computed-torque control in Cartesian 
space the control law F  is 

*ˆ*ˆ hUDF +=  (5) 

and the control input U  is given by 
)()( XXKXXKXU dPdDd −+−+= &&&  (6) 

where PK  and DK  are nn ×  symmetric positive 
definite desired dumping, and stiffness gain matrices, 
respectively and dX  is the desired trajectory.  
Combining (4), (5) and (6) yields the closed loop 
tracking error dynamic equation 

]***[*)ˆ( 1
f

PD

FhXDD

EKEKE

+∆+∆
=++

− &&

&&&
 (7)

where *ˆ** DDD −=∆ , *̂** hhh −=∆  and 
XXE d −= . In the ideal case where 

0** =∆=∆ hD  and 0* =fF , the closed loop 

behavior satisfies the second order differential 
equation 

0=++ EKEKE PD
&&&  (8) 

 
Since there are always uncertainties in the robot 
dynamics, the ideal equation (8) can not be achieved 
in general. Eq. (7), which is degraded and 
unpredictable govern the actual system performance. 
Thus, the computed torque based position control in 
Cartesian space is not robust in practice. To improve 
performance, NN controller can be introduced to 
generate additional input to compensate for 
disturbances due to model uncertainties. These 
additional compensating inputs can be placed in four 
different locations (as presented in the next 
paragraph) and the proposed architecture is shown in 
Fig. 2. 
 
 

4. CARTESIAN SPACE NN CONTROLLER 
SCHEMES 

 
Four different NN controller designs can be 
proposed, so as to achieve disturbance rejection for 
an uncertain system (Moise et al 2001). The design 
perspectives are dependent on the compensated 
position by NN as shown in Fig. 1 and Fig. 2. There 
are four locations that can be compensated: first, at 
torque level τ , second, at force level F , third at 
control input level U . Finally, compensation at input 
trajectory level dX  is depicted separately in Fig. 2. 
By defining a unified training signal all NN control 
schemes have the same goal of minimizing the same 
objective functions. The NN outputs Φ  of all the 
schemes try to cancel out the uncertainties caused by 
inaccurate robot model in the computed-torque 
controller. It is noted that the NN inputs X  can be 
either )(tX d , )(tX d

& , )(tX d
&&  or the time-delayed 

values )(tX d , )1( −tX d , )2( −tX d . The latter 
case is called time-delayed (Jung and Hsia 1994, 
Jung and Bonitz 1995, Naredra and Parthasarathy 
1990). Delay time is chosen as the sampling period 
of the controller. Here we lay out each scheme 
analytically. 
 
Scheme 1. Compensating at τ . 
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The control law of compensating at torque level is 

τΦ++=τ *]ˆ*ˆ[)( hUDJt T  (9) 

where τΦ  is output of NN at torque level. 
Combining with the robot dynamic equation yields 
the corresponding closed loop error system as 

])(***[*)ˆ( 11
τΦ−+∆+∆

=++=
−− T

f

PD

JFhXDD

EKEKEv
&&

&&&

 

(10) 

Since the control objective is to generate Φ  to 
reduce v to zero in (10), error signal v 

EKEKEv PD ++= &&&  (11) 

Is proposed to be used as the new error signal for 
training the NN in all schemes. The ideal value of 

τΦ  at 0=v  then is 

)***( f
T FhXDJ +∆+∆=Φ τ

&&  (12) 

 
Thus NN is required to learn robot Jacobian and this 
degrades the performance comparing to other 
schemes. Clearly, minimizing the error signal v 
allows us to achieve ideal position control directly.  
Following a similar procedure one can derive the 
relevant equations for the other three control schemes 
(Moise et al 2001). 

)(tx&&

RobotKD JTU f t

xd(t)

e&
*̂D

*̂h

)(tx&

)(txd&&

S

KPS

S S
x(t)

)(txd&

+
–
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+
+

+

++

–
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+
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Fig. 1. NN control structure in cartesian space with 

different locations of compensation 
 
Scheme 2. Compensating at F . 
In order to avoid learning kinematic Jacobian, 
compensating location can be moved from the first 
level (torque) to the second level (force) in Fig. 1. 
Similarly, the control law from Fig. 1 and the error 
signal are derived as 

)**ˆ()( f
T hUDJt Φ++=τ  (13) 

)***(*)ˆ( 1
ffFhXDDv Φ−+∆+∆= − &&  (14)

while at convergence, the ideal value for fΦ  is 

ff FhXD *** +∆+∆=Φ &&  (15) 

which is a simplification of (12). The NN does not 
need to learn robot Jacobian. 
 
Scheme 3. Compensating at U . 

This scheme is to compensate at control input U . 
Accordingly, the control law and signal v are given 
by 

*]ˆ)(*ˆ[)( hUDJt u
T +Φ+=τ  (16) 

ufFhXDDv Φ−+∆+∆= − )***(*)ˆ( 1 &&  (17)

while the ideal NN output is  
)***(*)ˆ( 1

fu FhXDD +∆+∆=Φ − &&  (18)

 
Scheme 4. Compensating at dX . 
Finally, for compensating input trajectory, the control 
law and the error signal v become 

*]ˆ))(

)((*[)(

hXXK

XXKXDJt

xdP

dD
T

+Φ+−+
−+= &&&&τ

 
(19)

xPf KFhXDDv Φ−+∆+∆= − )***(*)ˆ( 1 &&  (20)

At 0=v , the ideal output of NN is 
)***(*)ˆ()( 11

fPx FhXDDK +∆+∆=Φ −− &&  (21)

It can be seen (Moise et al 2001) that xΦ  has the 
smallest magnitude among all schemes presented 
above. The performance is also dependent on the 
feedback gain PK . Ideally, it is true that 

xPu K Φ⋅=Φ . Thus, the compensating magnitudes 
of NN output are different from Scheme 1 to Scheme 
4 under the same NN structure with Scheme 4 having 
the smallest. This simply means that Scheme 4 is the 
best solution in terms of performances since the NN 
has to emulate a less complex function with smaller 
range of values. Experimental evaluation of the 
above schemes, given bellow in section 6, verifies 
the theoretical justification.  

RobotKD JTU f t

xr
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Fig. 2. NN control structure that compensates at input 
trajectory level.. 
 
 

5. TRAINING OF THE NEURAL NETWORK 
COMPENSATORS 

 
The weight updating law minimizes the objective 
function I , which is a quadratic function of the 
training signal v : 

vvI T

2
1=  

(22) 
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 Differentiating (22) and using (12) yields the 
gradient of I  for Scheme 1 as follows (Moise et al 
2001): 

vDJ
w

v
w
v

w
I TTT

TT
−−τ

∂
Φ∂−=

∂
∂=

∂
∂

*)ˆ()(  
(23) 

For other schemes: 
Scheme 2 Scheme3 

T
T
f

T

D
ww

v −

∂
Φ∂

−=
∂
∂

*)ˆ(  
ww

v T
u

T

∂
Φ∂−=

∂
∂

 

 

and T
P

T
w

T

K
ww

v
∂
Φ∂−=

∂
∂

 for Scheme 4. Thus, the 

learning algorithm based on gradient shows a 
decreasing order of complexity (Moise 2000) from 
Scheme 1 to Scheme 3 and 4. The back-propagation-
updating rule with a momentum term is 

)1()( −∆α+
∂
∂η=∆ twv

w
v

tw
T

 
(24) 

where η  is the update rate and α  is the momentum 
coefficient. 
 
 

6. EXPERIMENTAL EVALUATION 
 
In this section we present some simulation results to 
evaluate the performance of the above-presented NN 
compensation schemes. For simplicity, a two-link 
revolute planar manipulator was selected having link 
lengths m121 == ll  and link masses m1 = 0.8kg, 
m2 = 2.4kg. Figure 4 shows the desired manipulator’s 
path in 2-D Cartesian space. This path was artificially 
computed by specifying the desired joint variables 
and then using the forward kinematic equations of 
the 2-link planar manipulator to obtain the desired 
Cartesian path. In Figure 3 (+) denotes the beginning 
and (*) the end of the path.  The joint variables are 
computed by using the following formula 

800,,0
)4.0sin(2.05.0
)25.0sin(2.05.0

2

1 L=
+=
+=

t
tq
tq

π
π
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Fig. 3. The desired trajectory in Cartesian space 
 
The PD controller gains are selected as 

]20,20[diagK D =  and ]100,100[diagK P =  which 

give identical critically damped motions at the two 
axes. We assume, for simplicity, that our uncertainty 
about the model is reduced to incomplete knowledge 
of the exact values of the masses. More specifically 
we assume that the controller operates based on false 
values of the masses, which are 10% different from 
the real values. Figure 4 shows the performance of 
the conventional PD controller. The initial position of 
the end point of the manipulator is assumed to be far 
from the starting point of the desired path. The end 
point approaches the desired path, but, due to the 
uncertainties, it fails to follow the desired path with a 
satisfactory precision. For clearness, only the first 
parts of the trajectories are shown.  
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Fig. 4. Tracking of the desired trajectory by the 

conventional PD controller. 
 
The performances of the various compensation 
schemes are then examined. For each one of the NN 
compensators, we have chosen the same thee layer 
(6-8-2) neural network (the number of hidden 
neurons, 8=Hn ). The back-propagation algorithm 

parameters are: 0)0( =k
ijw (k refers to the output 

layer) and 9.0=α .  Fig. 5(a-d) shows the tracking 
of the desired trajectory by using the four NN control 
schemes.  First, we observe that all of the schemes 
succeed in compensating for the existing 
uncertainties, therefore they perform much better 
than the conventional PD controller. It is also evident 
that the speed of getting near to the desired trajectory 
is faster when going from scheme 1 to scheme 4, 
with schemes 3 and 4 having almost identical 
performance. This implies that the NN presents faster 
its desired performance when going from scheme 1 
to scheme 4. This is a direct consequence of the fact 
that the same NN has to learn less complex functions 
when going from scheme 1 to scheme 4. The same 
fact is also evident in Fig. 6, where the error signal v 
is displayed for the four different schemes. The 
experimental results fully comply with the theoretical 
expectations. The very significant performance 
improvement, which is obtainable by applying the 
NN compensation at the reference trajectory level 
instead of at the joint torque/force level is very useful 
for practical applications. Using this scheme, the NN 
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compensator can be incorporated in the trajectory 
planner of any existing robot control system without 
having to alter the internal structure of the controller. 
It has to be noticed here that in scheme 4, in order to 
avoid instabilities during the training of the NN, 
instead of using Kp in (24) we are using the modified 

pp KK 01.0=′  
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Fig. 5a. Tracking of the desired trajectory using the 

NN controller of scheme 1 (torque 
compensation). 
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Fig. 5b. Tracking of the desired trajectory using the 

NN controller of scheme 2 (compensation at 
force). 
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Fig. 5c. Tracking of the desired trajectory using the 
NN controller of scheme 3 (compensation at 
U). 
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Fig. 5d. Tracking of the desired trajectory using the 

NN controller of scheme 4 (compensation at 
Xd). 
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Fig. 6. Training signal v versus iterations (t) for the 

four NN compensated  controllers. 
 
 

7. CONCLUSION 
 
In this paper the problem of Cartesian control of 
uncertain manipulators using neural networks is 
examine. We present and compare four different NN 
compensation schemes to achieve disturbance 
rejection for an uncertain system. It is shown that, 
although NN compensation for model uncertainties 
has been traditionally carried out by modifying the 
joint torque/force of the robot, it is also possible to 
achieve the same objective by using the NN to 
modify the reference Cartesian trajectory. We show 
that, for the same neural network, the required 
internal signal level for the trajectory modification 
approach is much smaller. Thus we are able to 
theoretically justify that very significant performance 
improvement is obtainable by applying the NN 
compensation at the reference trajectory level instead 
of at the joint torque/force level. Simulation results 
fully support this conclusion. This approach is very 
attractive in practice because it can be incorporated 
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in the trajectory planner of any existing robot control 
system without having to alter the internal structure 
of the controller. 
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