
THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI 
FASCICLE III, 2000 ISSN 1221-454X 

ELECTROTECHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS 

This paper was recomended for publication by S. Caraman 
47 

 
 
 
 
 
 
 

ON EXPONENTIAL AND ASYMPTOTIC ESTIMATION OF STATE VARIABLES IN 
BIOPROCESSES 

 
 

Dan SELISTEANU, Cosmin IONETE, Emil PETRE 
 
 

University of Craiova, Department of Automatic Control, 
A.I. Cuza Str. No. 13, RO - 1100 Craiova, Romania,  

E-mail: dansel@automation.ucv.ro 
 
 
 
 

Abstract: The paper presents on-line estimation strategies for bioprocesses, which are 
characterized by strongly nonlinear dynamics. A general form for the state observers is 
analysed and the exponential observability of bioprocesses is discussed. For those 
biotechnological processes that possess the property of exponential observability, an 
extended Luenberger observer is implemented. If exponential observers cannot be used, a 
solution is the design of asymptotic observers. The proposed observers are implemented 
for a microbial growth process coupled with an enzyme-catalysed reaction, which is a 
usual bioprocess that takes place in a fed-batch bioreactor. Illustrative computer 
simulations and conclusions are included.  
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1. INTRODUCTION 
 
The absence of reliable and cheap sensors in 
bioindustry is a characteristic of most applications. 
This problem leads to the incapacity of the control 
system to provide on-line measurements of the 
biological state variables. Therefore, the design and 
the implementation of state observers (so-called 
software sensors: Bastin and Dochain, 1990) for 
those state variables which are not measurable in 
real-time is very important for numerous practical 
bioprocess control applications. 
 
The paper is organized as follows. In Section 2, the 
general dynamical model of the bioprocesses is 
presented. Based on this model, a general form of 
state observer is analysed and the property of 
exponential observability is discussed. For those 
cases when the bioprocess is exponentially 
observable, an extended Luenberger observer is 
designed. Section 3 deals with the design and 
implementation of asymptotic observers. In Section 
4, the proposed exponential and asymptotic observers 

are analysed and implemented for a microbial growth 
process coupled with an enzyme-catalysed reaction. 
Finally, Section 5 collects the conclusions. 
 
 

2. EXPONENTIAL OBSERVERS 
 
The dynamical state-space model of a 
biotechnological process in a bioreactor expresses the 
mass balance of the components in the bioreactor, 
and a general dynamical model can be obtained 
(Bastin and Dochain, 1990; Bastin, 1991): 
 

    QFD)(K
dt
d −+⋅−= ξξϕξ

          (1) 

where ξ  represent the state vector, i.e. the vector of 
the concentrations of the n components inside the 
bioreactor. K is the matrix of yield coefficients, ϕ  is 
the vector of reaction rates; D is the dilution rate, F 
the vector of the rates of supply and Q the vector of 
the rates of removal (for the components in gazeous 
form). 
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If there are some state variables iξ , which are not 
measurable in real-time, a state observer must be 
designed in order to obtain a good control strategy. A 
general class of observers for bioprocesses of form 
(1) is proposed by Bastin and Dochain, 1990: 
 

)ˆ()̂(QFˆD)̂(K
dt

ˆd
mm ξξξΩξξϕξ −⋅+−+⋅−=   (2) 

 
where ξ̂  is the estimated state vector, )̂(ξΩ  is a 
gain matrix and mξ  is the vector of measurable state 
variables: ξξ ⋅= Lm  , with L a selection matrix. The 
design of the observer consists in the choice of gain 
matrix. The dynamic of the estimation error 

ξξ ˆe −=   is 
 

   [ ] eL)̂(eD)̂()eˆ(K
dt
de ⋅⋅−⋅−−+= ξΩξϕξϕ     (3) 

 
It is clear that e = 0 is an equilibrium point of (3). 
The linear approximation around e = 0 can be easily 
obtained: 
 

       [ ]eL)̂()̂(A
dt
de ⋅⋅−= ξΩξ           (4) 

 

where n
ˆ

ID
)(

K)̂(A ⋅−







∂
∂=

=ξξξ
ξϕξ .  

 
If it is possible to impose desired values for the 

eigenvalues of matrix [ ]L)̂()̂(A ⋅− ξΩξ  by choosing 
the gain matrix, then the system (1) is exponentially 
observable and the observer (2) is an exponential 
observer (Bastin and Dochain, 1990; Deza, et al., 
1993). A necessary condition of exponential 
observability is that the observability matrix  
 

       O [ ]Tn)(AL)(AL)(ALL 12 −⋅⋅⋅= ξξξ K    (5) 
 
is a full rank matrix: rank(O) = n  along the state 
trajectories, with n the dimension of state vector. 

 
When the bioprocess is exponentially observable, is 
possible to try the implementation of an extended 
observer, for example an extended Luenberger 
observer. The design of this exponential observer 
consists in the choice of gain matrix )̂(ξΩ  such that 
the equilibrium point e = 0 of (4) is asymptotically 
stable. Therefore, the gain matrix must to obey two 
conditions (Bastin and Dochain, 1990): 

(i) the matrix [ ]L)̂()̂(A ⋅− ξΩξ  and his derivative 
are bounded; 
 
(ii) the real parts of eigenvalues of  

[ ]L)̂()̂(A ⋅− ξΩξ  are strictly negative: 
 

     { }[ ] ξδδξΩξλ ˆ,,L)̂()̂(ARe i ∀><≤⋅− 00     (6) 
 
Finally, the state estimator consists in the system (2) 
where the gain matrix is obtained using the conditions 
(i) and (ii), with the design parameters iλ . 
 
 

3. ASYMPTOTIC OBSERVERS 
 
When the system is not exponentially observable, a 
possibility is to design and to implement an 
asymptotic observer for the state variables (Petre, 
1997). The asymptotic observer can be designed even 
without knowledge of kinetic reaction, which is a 
great advantage because the kinetic modelling is a 
difficult task (Charbonnier and Cheruy, 1994; 
Selisteanu and Petre, 1999). 
 
The design of an asymptotic observer is based on 
some useful changes of coordinates, which lead to a 
submodel of (1) independent of the kinetics. In order 
to achieve the change of coordinates, a partition of 
the state vector ξ  in two parts is considered. This 
partition denoted ),( ba ξξ induces correspondingly 
partitions of the yield matrix K: (Ka , Kb) and the rate 
vectors F and Q: (Fa ,Fb), (Qa, Qb). We suppose that 
the state partition is chosen such that submatrix aK  is 
full rank and )K(rank)K(rank)dim( aa ==ξ . 
Then a linear change of coordinates (a 
diffeomorphism) can be defined: 

 
baCz ξξ +⋅=               (7) 

 
with z the auxiliary state vector and C the solution of 
the matrix equation 0=+⋅ ba KKC .  
 
In the new coordinates, the model (1) can be 
rewritten 
 

     

bbaa

aaaaaa
a

QF)QF(CzD
dt
dz

QFD)Cz,(K
dt

d

−+−⋅+⋅−=

−+⋅−−= ξξξϕξ

      (8) 

 
The main gain of the change of coordinates is that the 
dynamics of the auxiliary state variables is 
independent of the reaction kinetics. 
Now the auxiliary state vector can be rewritten as a 
linear combination of the vectors of the measured and 
unmeasured states 
 

          nmm CCz ξξ ⋅+⋅= 21           (9) 
 
with C1 and C2 well defined matrices. 
 
Remark: The asymptotic observers can be designed 
only if the dimension of measurable sate vector is 
bigger than the rank of matrix K.   
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If the matrix C2 is left invertible, the asymptotic 
observer equations for (1) derive from the structure 
of equations (8) and (9): 
 

           
)Cẑ(Cˆ

QF)QF(CẑD
dt
ẑd

mnm

bbaa

ξξ 12 −⋅=

−+−⋅+⋅−=

+
       (10) 

 
where TT C)CC(C 2

1
222

−+ = . 
 
The asymptotic observer is indeed independent of the 
kinetics. The asymptotic observer (10) has good 
convergence and stability performances (Bastin and 
Dochain, 1990; Petre, 1997).  
 
 

4. ESTIMATION OF STATE VARIABLES IN A 
COMBINED GROWTH PLUS 

ENZYME-CATALYSED BIOPROCESS 
 
The above described state observers are designed and 
implemented for a microbial growth process coupled 
with an enzyme-catalysed reaction, which is a usual 
bioprocess that takes place in a fed-batch bioreactor. 
The reaction scheme and the dynamical model are 
(Bastin, 1991; Selisteanu and Petre, 1996) 
 

XPXS

XOS

+→+

→+
2

1

ϕ

ϕ

         (11) 

 
In the reaction scheme (11) S is the substrate, O is the 
dissolved oxygen, X represents the biomass and P is 
the synthesis product.  
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   (12) 

 
In the dynamical model (12), S, X, O, and P are the 
concentrations of the components from the reaction 
scheme, 1ϕ and 2ϕ  are the reaction rates. The state 
vector and the yield matrix are 

[ ]


















−

−−

==
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3

21

k

kk

K;OPXS Tξ  

 
Then the model (12) can be compactly written 
 

      FD)(K
dt
d +−= ξξϕξ

        (13) 

 
where [ ] [ ]TT FFF,)()( 2121 00== ξϕξϕϕ , F1 
represents the substrate rate supply and F

2
 the oxygen 

rate supply. 

 
If the dissolved oxygen is not limited and the 
synthesis product P has not an inhibitory action, then 
the reaction rates can be modelled as follows 
 

        
X)S()O,P,X,S(
X)S()O,P,X,S(

⋅=
⋅=

νϕ
µϕ

2

1         (14) 

 
with )S(µ  the specific growth rate, considered of 
Monod type, and )S(ν  the specific accumulation 
product rate, considered of Haldane type: 
 

SK
S

)S(
M

*

+
=

1

µµ          (15) 

iM K/SSK
S

)S( 20
2

++
=νν         (16) 

 
In relations (15), (16), 

21 MM K,K  are the Michaelis-

Menten coefficients, iK  is the inhibition coefficient 

and 0νµ ,*  are the maximum specific rates. 
  
The influent substrate rate can be defined as 
 
  inSDF ⋅=1          (17) 
 
where D is the dilution rate and S

in
 the influent 

substrate concentration. 
 
 
4.1 The exponential observability property  
 
For the bioprocess described by the model (13)-(17), 
the design of an exponential observer can be tried. In 
most practical applications, the biomass cannot be 
measured. It can be considered that the measured 
states are P and O, and the unmeasured states are X 
and S. 
 

  [ ] [ ] 





===

1000
0100

L,XS,OP T
nm

T
m ξξ  

 
 
Under the hypothesis that D, S

in
 and F

2
 can be on-line 

measurable, that the structure and the coefficients of 
kinetics are known and furthermore that the yield 
coefficients are also known, the equations of the state 
observer of type (2) for the bioprocess (13)-(17) are 
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Ŝ

dt
d

in

ν
µ  

               




















−






+

Ô
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The form of gain matrix )̂(ξΩ  is 
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The estimation error ξξ ˆe −=  verifies the equation 
(3) and the linear approximation around e = 0 is 
given by (4), where  

 

4ID
)(

K)̂(A
ˆ
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ξϕξ . 

 
The calculation of the matrix )̂(A ξ  implies the 
calculation of the derivatives of the reaction rates: 
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If the form (14) is taken into account, after 
straightforward calculation the vector of derivatives 
is obtained: 
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)Ŝ(X̂)Ŝ(
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The final form of the matrix )̂(A ξ  is 
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with ,DX̂)Ŝ(kX̂)Ŝ(ka −′−′−= νµ 2111  

)Ŝ(k)Ŝ(ka νµ 2112 −−= . 
The observability matrix O can be obtained easily 
from (5): 
 

O



















⋅
⋅
⋅

=

)(AL
)(AL
)(AL

L

ξ
ξ
ξ

3

2          (21) 

 
After some calculations, by analysing the 
observability matrix (21), it can be concluded that the 
rank of O is maximum (i.e. n = 4) if it is achieved the 
condition 033 ≠′−⋅′ X)S()S(kX)S()S(k µννµ or 
equivalent ( 3k  and X are positive values) 
 

   0≠′−′ )S()S()S()S( µννµ         (22) 
 

along the trajectories of the system. If the specific 
rates have the particular form (15), (16) then the 
condition (22) becomes 
 
         02

211

2 ≠−⋅+⋅+ )KK(KSKS MMiM         (23)  
 
Because the variables S and X are concentrations 
(positive values), the analysis of the relations (22) 
and (23) shows that the rank condition rank(O) = 4 is 
achieved only if 

21 MM KK > . While the conditions 

00 ≠≠ X,S  are in general accomplished, the 
condition 

21 MM KK >  is not universally valid. 

 
Concluding, an exponential observer of the form (18) 
cannot be always designed for our bioprocess. In 
such situations is preferable the design of an 
asymptotic state observer. However, if the particular 
values for the Michaelis-Menten coefficients 

21 MM K,K  allow the construction of the exponential 

observer, another problem is the design of the gain 
matrix (19). For instance, if an extended Luenberger 
observer is designed, it is quite difficult to obtain the 
components of the gain matrix. The conditions (i) and 
(ii) must be accomplished by imposing 4 eigenvalues 
with negative real part for the matrix of the linearized 
estimation error system. 
 
 
4.2 The asymptotic observer design 
 
The design of an asymptotic observer for the 
bioprocess has two advantages: first the problem of 
the exponential observability checking is avoided and 
second the state observer can be obtained without the 
knowledge of the reaction kinetics. 
 
For the bioprocess described by the model (13)-(17), 
the design of an asymptotic observer will be achieved 
by considering that the measured states are S and O, 
and the unmeasured states are X and P. In order to 
achieve the change of coordinates described in 
Section 3, a partition of the state vector ξ  in two 
parts ),( ba ξξ is considered: 
 

    [ ] [ ]Tb
T

a OP,XS == ξξ         (24) 
 
The partition (24) induces correspondingly partitions 
of the yield matrix K and the rate vector F: 
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The submatrix aK  is full rank, so the linear change 
of coordinates (7) can be defined. The new 
coordinates are 
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with z the auxiliary state vector and C the solution of 
the matrix equation 0=+⋅ ba KKC . The matrix C 
can be easily obtained: 
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Therefore, the auxiliary coordinates are 
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In the new coordinates (26), (27) the bioprocess 
model can be rewritten as 
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The auxiliary state vector z can be written as a linear 
combination of the measured and unmeasured state 
vectors [ ] [ ]Tnm

T
m PX,OS == ξξ : 
 
          nmm CCz ξξ ⋅+⋅= 21         (29) 

 
The matrices C

1
 and C

2
 are obtained by calculation 

from (27) and (29): 
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Now the equations of the asymptotic observer (10) 
for the bioprocess (13)-(17) can be written 
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ẑ
D

ẑ
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where ẑ  and nmξ̂ are the estimations of z  and 

respectively nmξ , and 
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Then the detailed equations of the asymptotic 
observer (31) are 

 

   

)Oẑ(
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The inspection of the equations (32) shows that 
indeed the knowledge of the reaction kinetics is not 
necessary for the estimation of state variables X and 
P. For the implementation of the asymptotic observer 
the knowledge of the yield matrix K is required.   
 
Simulation results. The asymptotic observer (32) was 
implemented for the bioprocess of microbial growth 
coupled with enzyme-catalysed reaction (13)-(17). 
The data used in simulation are 
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First, in Fig. 1 the time evolutions of the 
concentrations (S), biomass (X), synthesis product 
(P) and dissolved oxygen (O) are presented (for a 
constant value of the rate dilution 120 −= h.D ). For 
the implementation of the asymptotic observer (32), 
the dilution rate is considered of the rectangular form 
depicted in Fig. 2. This evolution of the dilution rate 
assures the achievement of the well-known 
persistence excitation condition. 
In Fig. 3 the concentrations of X and P (solid line) 
and the estimates of these concentrations (dashed 
line) are represented. It can be seen that the evolution 
of the estimated concentrations is good, even if there 
are different initial conditions for X, X̂ , and P, P̂ . 
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Fig. 1. Evolution of concentrations (for D constant) 
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Fig. 2. The rectangular profile of the dilution rate D
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Fig. 3. The evolution of concentrations X, P and of 

the estimated concentrations 
 
 

5. CONCLUSIONS 
 
In this paper on-line estimation strategies for 
bioprocesses were presented. The property of 
exponential observability of bioprocesses was 
analysed. If the bioprocess is exponentially 
observable, an exponential observer such as the 
extended Luenberger observer can be designed and 
the on-line estimates of the unmeasured states are 
obtained. Another possible solution in this case is the 
extended Kalman observer. For those bioprocesses, 
which are not exponentially observable, a solution is 
the design of the asymptotic observers. These 

observers possess another advantage: the complete 
knowledge of the reaction kinetics is not needed. 
 
The estimation strategies are analysed and 
implemented for a microbial growth process coupled 
with an enzyme-catalysed reaction, which is a usual 
bioprocess that takes place in a fed-batch bioreactor. 
The appropriate solution for the estimation of state 
variables in the particular case of this bioprocess is 
the design of the asymptotic observer. The obtained 
results were tested by computer simulations and are 
optimistic from simulation point of view. 
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