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Abstract: The paper presents on-line estimation strategies for bioprocesses, which are
characterized by strongly nonlinear dynamics. A general form for the state observers is
analysed and the exponential observability of bioprocesses is discussed. For those
biotechnological processes that possess the property of exponential observability, an
extended Luenberger observer isimplemented. If exponentia observers cannot be used, a
solution is the design of asymptotic observers. The proposed observers are implemented
for a microbial growth process coupled with an enzyme-catalysed reaction, which is a
usual bioprocess that takes place in a fed-batch bioreactor. Illustrative computer

simulations and conclusions are included.
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1. INTRODUCTION

The absence of reliable and cheap sensors in
bioindustry is a characteristic of most applications.
This problem leads to the incapacity of the control
system to provide on-line measurements of the
biological state variables. Therefore, the design and
the implementation of state observers (so-called
software sensors. Bastin and Dochain, 1990) for
those state variables which are not measurable in
real-time is very important for numerous practica
bioprocess control applications.

The paper is organized as follows. In Section 2, the
general dynamical model of the bioprocesses is
presented. Based on this model, a genera form of
state observer is anadysed and the property of
exponential observability is discussed. For those
cases when the bioprocess is exponentialy
observable, an extended Luenberger observer is
designed. Section 3 deals with the design and
implementation of asymptotic observers. In Section
4, the proposed exponential and asymptotic observers

are analysed and implemented for a microbia growth
process coupled with an enzyme-catalysed reaction.
Finaly, Section 5 collects the conclusions.

2. EXPONENTIAL OBSERVERS

The dynamical date-space model of a
biotechnological processin a bioreactor expresses the
mass balance of the components in the bioreactor,
and a general dynamica model can be obtained
(Bastin and Dochain, 1990; Bastin, 1991):

dx

=K (0)-Dx+F-Q (2)

where X represent the state vector, i.e. the vector of

the concentrations of the n components inside the
bioreactor. K is the matrix of yield coefficients, | is

the vector of reaction rates; D is the dilution rate, F
the vector of the rates of supply and Q the vector of
the rates of removal (for the components in gazeous
form).

This paper was recomended for publication by S. Caraman
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If there are some state variables x;, which are not

measurable in rea-time, a state observer must be
designed in order to obtain a good control strategy. A
general class of observers for bioprocesses of form
(1) is proposed by Bastin and Dochain, 1990:

dx

il (X)- DX +F - Q+W(X)X{Xp- Xm) (2)

where x is the estimated state vector, W()Z ) isa
gain matrix and X, is the vector of measurable state
variables: x,, = L» , with L a selection matrix. The

design of the observer consists in the choice of gain
metrix. The dynamic of the estimation error

e=x-X is

d_e:K

o ﬁ (x+€)-j (x)|- Dxe- W(x)xLxe (3)

It is clear that e = 0 is an equilibrium point of (3).
The linear approximation around e = 0 can be easily
obtained:

j—te=A<x”>-vv(£)><L>e (4
whereA(i):KgMB - DA,
e ™ G

If it is possible to impose desired values for the
eigenvalues of matrix [A(x )- W(x )xL| by choosing
the gain matrix, then the system (1) is exponentially
observable and the observer (2) is an exponential
observer (Bastin and Dochain, 1990; Deza, et al.,

1993). A necessary condition of exponential
observability is that the observability matrix

O=|[L LxAx) LxA(x)? ...L><A(x)”'1Ir (5)

is a full rank matrix: rank(O) = n aong the state
trgectories, with n the dimension of state vector.

When the bioprocess is exponentialy observable, is
possible to try the implementation of an extended
observer, for example an extended Luenberger
observer. The design of this exponential observer

consists in the choice of gain matrix W()Z ) such that

the equilibrium point e = 0 of (4) is asymptotically
stable. Therefore, the gain matrix must to obey two
conditions (Bastin and Dochain, 1990):

(i) the matrix [A(i)- W(x )| and his derivative
are bounded;

(i) the red
A()Z)- W()Z)xL] are strictly negative:

parts of eigenvalues  of
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Rl {ax)- we))] £d<0,d>07 % (9)

Finaly, the state estimator consists in the system (2)
where the gain matrix is obtained using the conditions
(i) and (ii), with the design parameters | ; .

3. ASYMPTOTIC OBSERVERS

When the system is not exponentially observable, a
possibility is to design and to implement an
asymptotic observer for the state variables (Petre,
1997). The asymptotic observer can be designed even
without knowledge of kinetic reaction, which is a
great advantage because the kinetic modelling is a
difficult task (Charbonnier and Cheruy, 1994;
Selisteanu and Petre, 1999).

The design of an asymptotic observer is based on
some useful changes of coordinates, which lead to a
submodel of (1) independent of the kinetics. In order
to achieve the change of coordinates, a partition of
the state vector x in two parts is considered. This

partition denoted (X, X, ) induces correspondingly
partitions of the yield matrix K: (K, , Kp) and the rate
vectors F and Q: (F, ,Fy), (Qa Qp). We suppose that
the state partition is chosen such that submatrix K, is

full rank and dim(x,)=rank(K,)=rank(K).

Then a linear change of coordinates (a
diffeomorphism) can be defined:

z2=CxX, *+Xp (7
with z the auxiliary state vector and C the solution of
the matrix equation CxK, + K, =0.

In the new coordinates, the model (1) can be
rewritten
ax, _, .
o Kd (X4,2- Cx,)- D, +F, - Q,
dz
E:' DXZ+C>(Fa' Qa)+Fb' Qb
The main gain of the change of coordinates is that the
dynamics of the auxiliary state variables is
independent of the reaction kinetics.
Now the auxiliary state vector can be rewritten as a
linear combination of the vectors of the measured and
unmeasured states

(8)

Z:C1>§(m+cz>§(nm

9
with C; and C, well defined matrices.
Remark: The asymptotic observers can be designed

only if the dimension of measurable sate vector is
bigger than the rank of matrix K.
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If the matrix C, is left invertible, the asymptotic
observer equations for (1) derive from the structure
of equations (8) and (9):

dz

E:'sz"'c)(':a'Qa)"'Fb'Qb (10)

Xom :C; >(2' Clxm)
where C; =(C,C,) 'C; .

The asymptotic observer is indeed independent of the
kinetics. The asymptotic observer (10) has good
convergence and stability performances (Bastin and
Dochain, 1990; Petre, 1997).

4. ESTIMATION OF STATE VARIABLESIN A
COMBINED GROWTH PLUS
ENZYME-CATALY SED BIOPROCESS

The above described state observers are designed and
implemented for a microbia growth process coupled
with an enzyme-catalysed reaction, which is a usual
bioprocess that takes place in a fed-batch bioreactor.
The reaction scheme and the dynamical model are
(Bastin, 1991; Selisteanu and Petre, 1996)

I1
S+O® X (11)
J
S+X ®2 P+X
In the reaction scheme (11) Sisthe substrate, O isthe

dissolved oxygen, X represents the biomass and P is
the synthesis product.

esu ek - ko ésu eR

ey u e u - - eyu e u
defuzet % adal p.elueli 1y
aepa o0 10,5 ~ epd eod

e u e u e .u e_u

Oi ek 104 00 e

In the dynamical model (12), S X, O, and P are the
concentrations of the components from the reaction
scheme, j ; and j , are the reaction rates. The state

vector and the yield matrix are

&k -kt
e u
€1 oY
x=[sxPO[; K=¢ u
€0 1
e u

Then the model (12) can be compactly written

d—szj (x)- Dx +F (13)
dt
where j =[,(x) j,(x), F=[R00FR], F
represents the substrate rate supply and F ) the oxygen
rate supply.

If the dissolved oxygen is not limited and the
synthesis product P has not an inhibitory action, then
the reaction rates can be modelled as follows

j 1(S,X,P,O) = I'T'(S)XX

j 2(S,X,P,0)=n(S)*xX (14

with m(S) the specific growth rate, considered of
Monod type, and n(S) the specific accumulation
product rate, considered of Haldane type:

. S
MS)=m 1 =3 (19
Ml
S

Ky, +S+S°/K;

n(S)=n, (16)
In relations (15), (16), Ky, , Ky, arethe Michaelis-
Menten coefficients, K; is the inhibition coefficient

and m ,n, are the maximum specific rates.

The influent substrate rate can be defined as
F =D, (17)

where D is the dilution rate and Sin the influent
substrate concentration.

4.1 The exponential observability property

For the bioprocess described by the model (13)-(17),
the design of an exponential observer can be tried. In
most practical applications, the biomass cannot be
measured. It can be considered that the measured
states are P and O, and the unmeasured states are X
and S

€ 0 1 O
xm =[P OJ", xum =[S X", L:%) 0 o 1§

Under the hypothesis that D, S, and F, can be on-line

measurable, that the structure and the coefficients of
kinetics are known and furthermore that the yield
coefficients are also known, the equations of the state
observer of type (2) for the bioprocess (13)-(17) are

€Sl &k - kU €SU DS, 0
e~u e Uz , 2.2 e~u é u
deXy gl O gEMS)XY [&Xi, g0y,
depy €0 1 Un(s)xg ¢PU éou
e.u é u e.u e u
80f ek 10g 80n eF a
~ o~ o~ o~ PO EPUY
+W(SX,POYE - anir (18)
COon &a;

The form of gain matrix W()Z) is
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eé'wﬂ(é,k,fv,é) W12(S X PO)U
W(X) éNZl(ASZ( E)?) WZZ(S X PO)U (19)

& 31(8 X,P,0) W32(S X PO)u

(S, X,P,0) W42(SX PO)Q

The estimation error e=x - x verifies the equation

(3) and the linear approximation around e = 0 is
given by (4), where

é1j (x )u

X Ke——=
AX) = S u(:x“

- Dx,.

The calculation of the matrix A()Z) implies the
calculation of the derivatives of the reaction rates:

eeﬂjlu éfiu  éfj,u eﬂjlut)
e (U _gsTst Sx Y &P &0k
€ ™ &l .0 SN0 eli,u el a0

g1st &xl &rH &0l
If the form (14) is taken into account, after
straightforward calculation the vector of derivatives
is obtained:

& (x)U _éS)xx m(S) 0 ou

§ ™ & &¢S)»X n(d) o of
where edn(S)u Nm(S) edn(S)u int(é).

8 Sd ts

Thefinal form of the matrix A(X ) is

¢ an D) 0 0u
e o\ v c Ll
~ S mS)X mS)-D 0 0O
=€ ~ A u
AV=g ne3)X  ns) -bp 0 u(zo)
& kMES)X - kn(S) 0 - Dg
with  a,; =-kmES)X - kn¢S)X - D,

ap = - km(S)- kn(S).
The observability matrix O can be obtained easily
from (5):

¢ L
é u
~L xA(X) ~
=¢ Az( )l,J (21)
&L xA%(x )
é u
al xA%(x )g

After some caculations, by anaysing the

observability matrix (21), it can be concluded that the
rank of O ismaximum (i.e. n = 4) if it is achieved the
condition  kym(SNYS)xX - kn(S)mM(S)X * 0 or
equivalent (k; and X are positive values)

m(Sn(S)-n(S)m(S)* 0 (22)
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along the trajectories of the system. If the specific
rates have the particular form (15), (16) then the
condition (22) becomes

S?+2Ky 3S+K Ky, - Ky, )10 (9
Because the variables S and X are concentrations
(positive values), the analysis of the relations (22)
and (23) shows that the rank condition rank(O) = 4 is
achieved only if Ky >Ky, . While the conditions

S10,Xt0 ae in genera accomplished, the

condition Ky > Ky, isnotuniversaly valid.

Concluding, an exponential observer of the form (18)
cannot be always designed for our bioprocess. In
such situations is preferable the design of an
asymptotic state observer. However, if the particular
values for the MichaglisMenten coefficients
Kwm, Ku, alow the construction of the exponential

observer, another problem is the design of the gain
matrix (19). For instance, if an extended Luenberger
observer is designed, it is quite difficult to obtain the
components of the gain matrix. The conditions (i) and
(i) must be accomplished by imposing 4 eigenvalues
with negative real part for the matrix of the linearized
estimation error system.

4.2 The asymptotic observer design

The design of an asymptotic observer for the
bioprocess has two advantages: first the problem of
the exponential observahility checking is avoided and
second the state observer can be obtained without the
knowledge of the reaction kinetics.

For the bioprocess described by the model (13)-(17),
the design of an asymptotic observer will be achieved
by considering that the measured states are S and O,
and the unmeasured states are X and P. In order to
achieve the change of coordinates described in
Section 3, a partition of the state vector x in two

parts (X, ,Xp) isconsidered:
x, =[S X]", x, =[P O[" (24)

The partition (24) induces correspondingly partitions
of the yield matrix K and the rate vector F:

& k- kU e 0 1u
“a= §1 0 H o= & ks Og
(29)
= _@Dx%nu _é0u
=a ,
e 0 LJ ngu

The submatrix K, is full rank, so the linear change

of coordinates (7) can be defined. The new
coordinates are
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Xa=[s X[’

(26)
z2=C x4 +X,

with z the auxiliary state vector and C the solution of
the matrix equation CxK, +K, =0. The matrix C

can be easily obtained:

61 ko
C=-Kp K" =5k, k4
80 ksg
Therefore, the auxiliary coordinates are
Z :iS+ﬁ X+P
K, ) (27)
z, =kzX +0O

In the new coordinates (26), (27) the bioprocess
model can be rewritten as

%z—kln(S)X- kon(S)X - DxS+D xS,
Z—T:n'(S)X

4z (28)
—L=_.Dxz;, +=D

- 4 DS

dz,

—==-Dz, +F

ot 2T

The auxiliary state vector z can be written as a linear
combination of the measured and unmeasured state

vectors X, =[S O]", X, =[X P|":
z= Cl Km+ CZ Xnm (29)

The matrices C, and C, are obtained by calculation
from (27) and (29):

61 gu ek 0
Cl = gkl Hl CZ = gkz 3 (30)
60 Kksq gks 0Og

Now the equations of the asymptotic observer (10)
for the bioprocess (13)-(17) can be written

- s el u
i? 1u:_D€21L,’I+ék_DSn|_]
dt &, § &0 €2 a (31)
e F2 a0
Xnm:C;(Z' Cle)
where 2z and inm are the edtimations of z and
é 1 0
& 5,
respectively X, and C; =C;* =& bou.
& - LU
& keksH

Then the detailed equations of the asymptotic
observer (31) are

51

dil_ Dx’21+kiD>ﬁn

(32)

ki .
'ki(zz'o)
2K3

The inspection of the equations (32) shows that
indeed the knowledge of the reaction kinetics is not
necessary for the estimation of state variables X and
P. For the implementation of the asymptotic observer
the knowledge of the yield matrix K is required.

Simulation results. The asymptotic observer (32) was
implemented for the bioprocess of microbial growth
coupled with enzyme-catalysed reaction (13)-(17).
The data used in simulation are

m =1h"Y, Ky =1g/1,Ky, =20g/1,
n,=6h% K, =10g/1,k =ks =1k, =2,
D=0.2h'S,=159/1,F, =2g/lh.

Firg, in Fig. 1 the time evolutions of the
concentrations (S), biomass (X), synthesis product
(P) and dissolved oxygen (O) are presented (for a

constant value of the rate dilution D =0.2h™1). For
the implementation of the asymptotic observer (32),
the dilution rate is considered of the rectangular form
depicted in Fig. 2. This evolution of the dilution rate
assures the achievement of the well-known
persistence excitation condition.

In Fig. 3 the concentrations of X and P (solid line)
and the estimates of these concentrations (dashed
line) are represented. It can be seen that the evolution
of the estimated concentrations is good, even if there

are different initial conditions for X, X ,and P, P.

9
(91
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Fig. 1. Evolution of concentrations (for D constant)
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Fig. 2. The rectangular profile of the dilution rate D
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Fig. 3. The evolution of concentrations X, P and of
the estimated concentrations

5. CONCLUSIONS

In this paper on-line estimation strategies for
bioprocesses were presented. The property of
exponential observability of bioprocesses was
analysed. If the bioprocess is exponentialy
observable, an exponential observer such as the
extended Luenberger observer can be designed and
the on-line estimates of the unmeasured states are
obtained. Another possible solution in this case is the
extended Kalman observer. For those bioprocesses,
which are not exponentially observable, a solution is
the design of the asymptotic observers. These
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observers possess another advantage: the complete
knowledge of the reaction kineticsis not needed.

The edtimation drategies are analysed and
implemented for a microbial growth process coupled
with an enzyme-catalysed reaction, which is a usual
bioprocess that takes place in a fed-batch bioreactor.
The appropriate solution for the estimation of state
variables in the particular case of this bioprocess is
the design of the asymptotic observer. The obtained
results were tested by computer smulations and are
optimistic from simulation point of view.
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