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Bovine β-lactoglobulin is the most abundant whey protein secreted in the milk of 
most mammals but not in the human, rodents and lagomorphs milk. The biological 
function of this protein is still not completely understood, but it is believed to be 
related to its globular structure and the presence of an internal cavity called calyx 
or β-barrel, where small hydrophobic molecules can bind. Recent studies revealed 
that β-lactoglobulin has at least three binding sites, located in the internal core of 
the calyx, at the dimer interface and in the hydrophobic region between α-helix 
and β-barrel. In particular, this review focuses on the studies presenting β–
lactoglobulin as potential carrier for polyphenolic compounds, molecules well-
known for their beneficial health effects. Regarding the polyphenols binding site, 
several studies indicated that it is located outside the protein calyx. 
Keywords: bovine β–lactoglobulin, binding affinity, Tanford transition, 
polyphenols 

 
Introduction  
β–Lactoglobulin (β-LG) is a globular protein belonging to the lipocalin family 
(Sawyer, 2013). It is present in the milk of ruminants and many other mammalian 
species such as sow, mare, kangaroo, dolphin, and manatee. β-LG is notably absent 
in the human, guinea pig, mouse, rat, camel, llama, and alpaca milk (O’Mahony 
and Fox, 2014). The protein was isolated for the first time from milk in 1934 by 
Palmer, being extensively studied afterwards, and used as model for trying new 
experimental and theoretical techniques because of its small dimensions and rapid 
separation and purification from the matrix (Palmer, 1934, Sawyer, 2013). So far, 
at least 12 genetic variants of β-LG are known, the most common in bovine milk 
being variants A and B (O’Mahony and Fox, 2014). The difference between these 
two variants is a mutation that occurs at positions 64 (AspA→GlyB) and 118 
(ValA→AlaB) in the amino-acids sequence. Even though the overall conformation 
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remains the same, these small differences affect properties like solubility, thermal 
stability, and pressure denaturation (Oliveira et al., 2001, Botelho et al., 2000, 
Keppler et al., 2014).   
In the beginning, whey was considered a dairy industry waste. Later, the beneficial 
value of whey components was recognized and whey protein concentrates and 
isolates started to be progressively used in the food industry (de Wit, 1998). In 
bovine whey, β-LG is the major protein accounting for approximately 50% of the 
total protein (O’Mahony and Fox, 2014).  
β-LG molecules have good functional properties being able to stabilize emulsions 
and foams by forming interfacial films and to specifically interact with each other 
and to associate into networks by forming gels or edible films (Foegeding et al., 
2002). 
 
Structure of β-lactoglobulin 
In order to understand the protein properties, the comprehension of the molecular 
structure is required. Therefore, different technique, such as macromolecular (X-
ray) crystallography and Nuclear Magnetic Resonance (NMR) spectroscopy, were 
applied to elucidate the structure of β-LG (Sawyer, 2013). Braunitzer et al. (1972) 
reported for the first time the correct amino acid sequence of β-LG. The primary 
structure of the β-LG consists of 162 amino acids, with a molecular weight of 18.4 
kDa and an isoelectric point of 5.3 (Sawyer, 2013, Oliveira et al., 2001). In 
solution, the secondary structure of β-LG consists of 8% α-helices, 45% β-sheets 
and 47% random coils, although some prediction methods indicate a greater helical 
content with implication in protein folding (Sawyer, 2003, Sawyer and Holt, 1993, 
Sakurai et al., 2009). In addition, each β-LG monomer contains two disulphide 
bonds (Cys66-Cys160 and Cys106-Cys119) highly responsible for protein secondary 
and tertiary structure stabilization, and one free thiol (Cys121) (O’Mahony and Fox, 
2014, Creamer et al., 2011).  
The β-LG monomer structure is made of nine antiparallel β-sheets strands (A – I), 
out of which eight (A – H) are wrapped around to form a conical barrel, called the 
central calyx (Kontopidis et al., 2004). The β-strands A – D along with strands E – 
H are the building sheets of this calyx. The strand A is present in both sheets of the 
conical barrel because of a 90° midpoint bending at Ser21 (Li et al., 2013). The 
bonding pattern specific to the antiparallel interaction between strands A and H that 
leads to a complete calyx shape, is favored by this bending. The calyx has a 
cylindrical shape. The cylinder has hydrophobic walls, a length of approximately 
15Å and a volume of 315 Å (Sawyer, 2013). The dimer interface in the ovine and 
bovine β-LG is formed by the antiparallel interactions between 146-150 residues of 
the ninth strand (I) with the equivalent motif from the other subunit, along with 
three amino acids from the A-B loop (Asp33, Ala34 and Arg40) (Sakurai and Goto, 
2002). Even though it is available in the porcine β-LG, strand I is not involved in 
the dimer formation at low pH values (Kontopidis et al., 2004). A 3-10 helix is 
located on the outer surface of the calyx, between strands G and H. The BC, DE 
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and FG loops that connect the β-strands at the closed end of the β-barrel are shorter 
compared to those at the open end which are more flexible and longer (Kontopidis 
et al., 2004). The EF loop acts as a gate to the calyx. At pH values lower than 7, the 
loop is closed, making binding impossible. Higher pH values lead to an opening of 
the loop, further allowing the ligands to bind into the hydrophobic core of the 
calyx. The Glu89 residue acts as a trigger for the opened / closed EF loop based on 
the fact that this residue is also implicated in the Tanford transition and has an 
extremely high pKa (Qin et al., 1998a, Li et al., 2013). The free thiol group of 
Cys121 has a pH-dependent reactivity, and is involved in the denaturation and 
aggregation behaviour (Havea et al., 2001). Cys121 is located on strand H on the 
outside of the β-barrel and under the α-helix. It has a low reactivity because of the 
limited exposure (Burova et al., 1998). Increasing the pH values from 4 to 8.5, a 
raise in the reactivity of the thiol group is observed (Kehoe et al., 2007). The 
reactivity and accessibility of the buried thiol group increases at pH values above 
7.4 due to the Tanford transition (Qin et al., 1998a). 

 
Figure 1. Details on the bovine β-lactoglobulin structure. The protein model was taken 

from RCSB protein Data Bank (PDB entry 3NPO; Loch et al., 2011) and is represented in 
magenta in New Cartoon style using VMD software (Humphrey et al., 1996). 
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Conformational transitions of β-lactoglobulin 
Circular dichroism and the related technique of optical rotatory dispersion, along 
with ultracentrifugation were initially used to show the conformational transition of 
β-LG between pH 2 and 10 (Sawyer, 2003). Reversible structural changes occur 
between pH 2.5 and 8 where the protein has an extremely well-conserved 
conformation. The structural changes that lead to protein unfolding take place at 
pH values higher than 9 (Uhrinova et al., 2000, Sakurai and Goto, 2007). Taulier 
and Chalikian (2001) performed an extended analysis of pH-dependent 
conformational variations using ultrasonic, densimetric, and spectroscopic studies. 
Five structural changes were suggested, the two extra transitions being present at 
pH values lower than 2 and higher than 10 (Taulier and Chalikian, 2001). The 
structural transition at pH between pH 2 and 10 can be schematically represented 
as Q↔N↔R→S. 
Acidic state (Q) ↔ Native form (N) 
Between pH 4.5 and 6.0, variants A and B undergo a reversible Q↔N transition 
leading to very small changes in the protein conformation. The most important is 
the “closed” position of the EF loop which prevents the access of other molecules 
in the internal core of the calyx. The Glu89 residue is buried and any slight 
modification of the free thiol group of Cys121 leads to a disturbance in the 
monomer-dimer equilibrium (Kontopidis et al., 2004).  
Native form (N) ↔ Reversible denatured form (R) 
A second reversible structural change that occurs between pH 6.5 – 7.8 (N↔R) is 
the so called Tanford transition (Tanford et al., 1959). This change is observed 
either by the modification of optical rotation ([α]D = −25° at pH 6 and −48° at pH 
8) or by the thermal denaturation peak (Qi et al., 1997, Qi et al., 1995). Upon 
increasing pH, the carboxyl of Glu89 becomes exposed and ionized due to the 
hydrogen bonding to the carbonyl of Ser116 (Brownlow et al., 1997). A detailed 
explanation of the Tanford transition was provided by Sakurai et al., 2009.  
Initially, Glu89 is deprotonated, causing an oscillation of the hydrogen bonding in 
Ile84, Asn90, and Glu108

 residues. This fluctuation allows for the rearrangement of 
the EF loop, strand D, and GH loop, leading to accessibility to the internal binding 
site of the calyx (Sakurai et al., 2009, Sakurai and Goto, 2007). In 2008, 
Vijayalakshmi et al., produced a β-LG where one subunit had an opened EF loop 
and the other one had a closed loop, leading to the conclusion that the Tanford 
transition does not involve a co-operation between these subunits.   
Reversible denatured form (R) → Base-induced denatured state (S) 
The third structural change leads to an irreversible alkali denaturation of the protein 
conformation (Mercadé-Prieto et al., 2008).  
β-Lactoglobulin binding properties to polyphenols 
The structure of the β-LG justifies its affiliation to the lipocalin family and calycin 
subclass, naturally involved in binding and transporting small hydrophobic 
bioactive compounds (Sakurai et al., 2009). Nowadays, the lipocalin family 
consists of more than 40 constituents (Åkerström et al., 2006). The majority of the 
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members have a molecular weight of 18 – 20 kDa, except for insecticyanin and 
crustacyanin, two larger proteins that adopt the lipocalin folding, and bind 
chromophores. The tertiary structure of the family is very well-conserved and is 
comprised of an antiparallel β-barrel or calyx (Sawyer, 2013). The biological 
functionality of these lipocalins relies on binding and transporting small 
hydrophobic molecules. Bos d 2 was identified as an allergen, even though it is a 
bovine lipocalin (Rouvinen et al., 1999). It was suggested that the biological 
property of β-LG is the binding in the central calyx of retinol and fatty acids 
(Sawyer and Kontopidis, 2000). In the last decade, other different potential ligands 
were studied for the interaction with β-LG (Sawyer, 2013). Oleic acid was the first 
ligand reported for binding to β-LG (Davis and Dubos, 1947). X-ray 
crystallography of β-LG – ligand complexes revealed that the main binding site is 
the internal core of the calyx. Also, other external binding sites were suggested 
(Qin et al., 1998b, Wang et al., 1999).  
Polyphenols are intensively studied due to their health-promoting properties. The 
most important physiological property of polyphenols is the antioxidant activity 
against reactive oxygen species associated with oxidative stress, cancer and other 
serious diseases (Shirai et al., 2015). Molecular docking (MD) studies were used to 
evaluate the interaction of different flavonoids, such as quercetin, quercitrin, and 
rutin, with β-LG. The MD studies revealed that quercetin and quercitrin bind to the 
internal core of the β-barrel. Because of its high volume, rutin cannot enter the 
calyx, instead it binds at the entrance of the cavity with four hydrogen bonds 
interactions. Greater binding constants values were reported for quercetin and 
quercitrin (1.2×106 and 1.9×106 M-1 respectively) due to the binding of these 
molecules in the internal cavity of β-LG which is more hydrophobic than its 
entrance, where rutin binds (Sahihi et al., 2012). Li et al. (2013) used Fourier 
transform infrared and fluorescence spectroscopy to investigate the binding of 
curcumin to bovine β-LG. At pH 6.0, curcumin binds on the external surface of the 
calyx, while at pH 7.0, due to a massive hydrophobicity, it binds into the central 
cavity. An improvement in the antioxidant activity was observed when curcumin 
had bound to β-LG (Li et al., 2013). Riihimaki et al. (2008) studied the binding of 
different classes of polyphenols’ aglycones to bovine and reindeer β-LG, using 
fluorescence quenching. Among flavonoids, the amount of bonded quercetin was 
higher compared to that of rutin (Riihimaki et al., 2008). Rawel et al. (2003) 
reported that both quercetin and rutin bind to β-LG. Moreover, the rather good 
binding affinities of β-LG for caffeic, ferulic, sinapic, and rosmarinic acids were 
also found. Other phenolic acids, such as gallic, protocatechuic, and syringic acids 
and octyl and propyl gallate, had either a very small or nonexistent binding affinity 
for β-LG. 
The effect of pH on the binding of polyphenols to β-LG was studied, revealing that 
the phenolic compounds were still attached to the protein at pH 2. Piperine, 
myricetin, and daidzein showed an affinity for binding to β-LG in alkaline 
conditions, when the protein exhibits a protective role toward polyphenols during 
non-heating food processing. The authors also established that during the thermal 
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treatment the complex between β-LG and polyphenol was greatly affected 
(Riihimaki et al., 2008). 
 
Table 1. Binding and apparent dissociation constants of polyphenolic ligands and β – 
lactoglobulin complexes 

Ligand 

Apparent 
dissociation 

constant, Kd, M 
(· 10-6) 

Binding constant, ka, 
M-1 References 

Quercetin - 1.2 · 106 
Sahihi et al., 2012 

 
Quercitrin - 1.9 · 106 

Rutin - 7.4 · 104 
Curcumin  - (5.23 ÷ 8.9)· 104 Li et al., 2013 

(-)-Epigallocatechin 
gallate 0.86  - 

Riihimaki et al., 
2008 

Daphnetin 0.58  - 
Hesperidin 0.30  - 
Naringenin 0.24  - 

Luteolin  0.65  - 
Vitexin 0.39  - 
Morin 0.34  - 

Myricetin 0.23  - 
Myricitrin 0.33  - 
Daidzein 0.44  - 
Genistein 0.72  - 

Ferulic acid 0.60  - 
Sinapic acid  0.60  - 
Resveratrol - 104 ÷  106 Liang et al., 2008 

(-)-Epigallocatechin - 1.3 · 103 Wu et al., 2011 
Green tea catechins  - (3.82 ÷ 6.54) · 103 

Stojadinovic et 
al., 2013 

Coffee chlorogenic 
acid - (3.11 ÷  14.4) · 104 

Cocoa flavonols - (8.15 ÷ 14.6) ·104 

Naringenin - 5.4 · 104 Shpigelman et al., 
2014 

Malvidin-3-O-
glucoside - 0.51 · 103 He et al., 2016 

 
Liang et al. (2008) studied the binding of resveratrol to bovine β-LG using circular 
dichroism and fluorescence spectroscopy. A blue shift of the fluorescence emission 
maxima was observed along with an increase of the emission intensity, suggesting 
that the environment surrounding the interaction surface is not as hydrophobic as 
the calyx internal cavity. Authors concluded that the binding site for resveratrol is 
on the surface of the protein (Liang et al., 2008). Wu et al. (2011) studied the 
binding interaction between (–)-epigallocatechin (EGC) from green tea and β-LG 
using spectroscopic methods. Catechins are used in the food industry as additives 
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and have antioxidant and anticarcinogenic properties. A series of changes in the β-
LG conformational structure suggested the binding between EGC and the protein 
(Wu et al., 2011). Polyphenol – β-LG complexes were studied for their antioxidant 
effect and resistance to extremely acid pH. Polyphenol extracts from tea, cocoa, 
and coffee acted as a protective shield for the secondary structure of β-LG when 
exposed to pH values of the gastrointestinal tract. Polyphenols display a strong 
antioxidant activity but, when in complex with β-LG, a reduced radical activity was 
observed (Stojadinovic et al., 2013).  
Allicin is a labile, bioactive compound of garlic with outstanding health-properties. 
In order to be suitable to enriching the functional foods, a delivery system for this 
polyphenol that masks its flavour was proposed (Wilde et al., 2016). Wilde et al. 
(2016) reported that allicin bound covalently to β-LG and the established complex 
modified the thiol group of β-LG that leads to a greater thermal stability compared 
to the native protein. The beverage enriched with allicin – β-LG complex was 
garlic odourless and tasteless (Wilde et al., 2016). Shpigelman et al. (2014) studied 
the binding properties of β-LG with two citrus flavonoids. Naringin and its 
aglycone naringenin possess many health properties, both presenting low water-
solubility. Additionally, naringin is very bitter. Naringenin bounded to both native 
and preheated β-LG, compared to naringin where no binding was detected. It was 
suggested that this lack of binding of naringin to β-LG might be due to the lower 
hydrophobicity and the steric obstruction of the sugar. The formation of β-LG–
naringenin complex enabled solubilisation and prevented crystallization of the 
flavonoid. The nanocomplexes obtained after freeze-drying may be used to fortify 
different beverages and enrich the functional foods area (Shpigelman et al., 2014). 
Anthocyanins were also reported to bind to β-LG (Oliveira et al., 2015, He et al., 
2016). The binding of malvidin-3-O-glucoside to β-LG was studied using 
fluorescence, Fourier transform infrared and circular dichroism spectroscopy and 
the complex obtained had a positive effect on the thermal stability of anthocyanin, 
preventing the degradation of colour during heat treatments (He et al., 2016). 
Usually, polyphenols interact with matrix components such as protein and 
polysaccharides from food systems (Oliveira et al., 2015). Oliveira et al. (2015) 
studied the behaviour of nanoparticles consisting of cyanidin-3-glucoside, β-LG, 
and polysaccharides. The nanoparticles affected the antioxidant activity of the 
anthocyanin due to the interaction between polymers and cyanidin-3-glucoside. 
(Oliveira et al., 2015). Oliveira et al. (2016) demonstrated that (+)-catechin 
interacts with β-LG and pectin/chitosan to form complexes. The mixture of each 
(+)-catechin with each polymer and β-LG had a stabilizing effect on the antioxidant 
activity (Oliveira et al., 2016).  
 
Conclusions 
The data presented in this review focused on the structural and conformational 
particularities of β-LG as a functional ingredient, since it has a high nutritional 
value and GRAS (generally recognized as safe) status. It also has a remarkable 
stability against gastric condition and can protect the ligand from the stomach harsh 
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environment or from another compound present in the food matrix. These 
properties qualify the β-LG as a suitable transporter of bioactive compounds for the 
enrichment of different food matrixes.  
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