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Lignocellulosic materials (LCM) are produced in large quantities and without 
clear application and their use as raw material for bioethanol production 
shows economic and ecologic benefits. LCM are composed mainly of three 
polymers: cellulose made up of glucose units, hemicellulose made up of 
several sugars (as xylose or arabinose), and lignin made up of phenylpropane 
units, interconnected in a strong structure. Pretreatment is an important step 
for bioethanol production from LCM, causing the solubilisation of 
hemicellulosic fraction (leading to the recovery of hemicellulose-derived 
saccharides) in order to obtain a solid phase enriched in cellulose and more 
susceptible to enzymatic attack. This study provides a comparative data 
regarding the chemical composition of various LCM used for bioethanol 
production, as well as different pretreatment technologies for improving the 
enzymatic hydrolysis of LCM. 
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Introduction 

The control of European energy consumption and the increased use of energy from 
renewable sources are important components of measures needed to reduce 
greenhouse gas emission and to meet the Kyoto Protocol of the United Nation 
Framework Convention on Climate Change. Improving technological process, the 
use of energy efficiency technologies and the use of energy from renewable 
sources in transportation are the most effective measures to reduce dependency 
from fossil fuels. The European Council of March 2007 established a mandatory 
target of a 20% share of energy from renewable sources in energy consumption by 
2020 and a mandatory 10% minimum target for the share of biofuels in transport 



C. T Buruiană et al. / AUDJG – Food Technology 37(1) 9-24 

 

 

10 

petrol and diesel consumption by 2020. Member States may encourage the use of 
biofuels made from wastes, residues, non-food cellulosic material and 
lignocellulosic material (LCM) (EU- Directive 2009/28/EC). 

LCM can be classified into six main groups: crop residues (corn stover, corn cobs, 
rice husks, barley husks, rye straw, oat straw, rice straw, wheat straw, corn stalks, 
cotton stalks, soya stalks, sugarcane bagasse), hardwoods (eucalyptus, acacia, 
poplar, black locust), softwoods (salix, spruce, pine), cellulose wastes (newspaper, 
waste office paper, recycled paper sludge), herbaceous biomass (alfalfa stems, 
switch grass), and municipal solid wastes (MSW) (Sánchez, & Cardona, 2008). 

The joint U.S. Department of Energy and U.S. Department of Agriculture billion 
ton study (Biomass as Feedstock, 2005) found that in the United States about 368 
million dry tons of sustainably removable biomass could be produced on 
forestlands and about 998 million dry tons could come from agricultural lands. 
Forestlands include 52 million dry tons of fuel wood harvested from forests, 145 
million dry tons of residues from wood processing, 47 million dry tons of urban 
wood residues, 64 million dry tons of residues from logging, and 60 million dry 
tons of biomass from fuel treatment operations. Agricultural lands in the United 
States could produce nearly 1 billion dry tons of biomass annually, including 428 
million dry tons of primary crop residues, 377 million dry tons of perennial energy 
crops and the rest of biomass from agricultural lands (Foust et al. 2006). 

Based on the Pan-European natural resources database and Geographic Information 
System for European Union, land productivity potentials (Fischer et al., 2010a) and 
land use scenarios (Fischer et al., 2010b) were elaborated resulting in 42.7 million 
hectares of energy crops, such as herbaceous and woody lignocellulosic feedstock, 
and 166 million dry tons of agricultural residues available for biofuel production in 
EU27, Switzerland and Norway by 2030 (Gnansounou, 2010). In Romania and 
Bulgaria, the analysis suggests that almost 8 million hectares of arable land for 
bioenergy feedstock production could be released by 2030 without influencing the 
food production (Fischer et al., 2010b). 

Physico-chemical and chemical processes have been used for pretreatment of 
lignocellulosic materials. Physico-chemical methods include: steam explosion 
(autohydrolysis), liquid hot water (LHW), CO2 explosion and AFEX (Ammonia 
fiber/ freeze explosion). Chemical methods are based on: acid pretreatment, 
alkaline pretreatment, wet oxidation, ozonolysis and organosolv. 

This review is focused on pretreatment methods for bioethanol production from 
lignocellulosic materials because they represent the largest amount of residues 
remaining after harvesting, with great potential, both economic and industrial, in 
order to produce bioethanol as an alternative fuel source. 

 
Lignocellulosic material 

LCM structure consists of three basic polymers: cellulose, hemicellulose and lignin 
found in stalks, stems and leaves (Demirbas, 2005; Arin & Demirbas, 2004). 
Cellulose is a homopolysaccharide composed of β-D-glucopyranose units linked 
together by (1 → 4)-glycosidic bonds. Glucose anhydride, formed by removing 
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water from glucose, is polymerized into long chains of cellulose containing 5000-
10000 glucose units. The basic unit of the cellulose polymer consists of two 
anhydride glucose units called cellobiose units. Hemicellulose is a mixture of 
various polymerized monosaccharide such as glucose, mannose, galactose, xylose, 
arabinose, 4-O-methyl glucuronic acid and galacturonic acid (Mohan et al., 2006). 
Lignin is a mononuclear aromatic polymer located in the cell walls of biomass and 
is connected to cellulose fibers (Yaman, 2004; Balat et al., 2008).  

LCM can vary in composition and moisture content according to: region, 
fertilization practices, harvesting, storage and storage time (Table 1). 
 
Table 1. Composition data of several lignocellulosic materials for bioethanol production 

 
Content (dry wt %) 

Feedstock 
Cellulose Hemicellulose Lignin 

References 

Hardwoods 
  Eucalyptus 
globulus 

46.30 25.83 22.90 Garrote et al., 2007 

  Acacia dealbata 50.50 19.30 21.90 Muñoz et al., 2007 
  Poplar 44.05 15.71 20.95 Pan et al., 2006 
  Black locust 41.61 17.66 26.70 Hamelinck et. al., 2005 
Softwoods 
  Salix 42.50 25.00 26.00 Sassner et al., 2008 
  Spruce 44.00 24.60 27.50 Sassner et al., 2008 
  Pine 44.55 21.90 27.67 Hamelinck et. al., 2005 
Agro-industrial residues 
  Corn stover 40.00 29.60 23.00 Sassner et al., 2008 
  Corn cobs 34.40 40.75 18.80 Parajó et al., 2004 
  Rice husks 36.70 20.05 21.30 Parajó et al., 2004 
  Barley husks 21.40 36.62 19.20 Parajó et al., 2004 
  Rye straw 41.10 30.20 22.90 Gullón et al., 2010 
  Oat straw 39.40 27.10 17.50 Nigam et al., 2009 
  Rice straw 36.20 19.00 9.90 Nigam et al., 2009 
  Wheat straw 32.90 24.00 8.90 Nigam et al., 2009 
  Corn stalks 35.00 16.80 7.00 Nigam et al., 2009 
  Cotton stalks 58.50 14.40 21.50 Nigam et al., 2009 
  Soya stalks 34.50 24.80 19.80 Nigam et al., 2009 
  Sunflower stalks 42.10 29.70 13.40 Nigam et al., 2009 
  Sugarcane 
bagasse 

40.00 27.00 10.00 Nigam et al., 2009 

  Ethiopian 
mustard 

32.70 21.90 18.70 González-García et al., 2010 

  Flax shives 47.70 17.00 26.60 González-García et al., 2010 
  Hemp hurds 37.40 27.60 18.00 González-García et al., 2010 

Dedicated energy crops 
  Alfalfa stems 27.50 23.00 15.80 González-García et al., 2010 
  Switch grass 31.98 25.19 18.13 Hamelinck et. al., 2005 

Waste papers 
  Newspaper 61.30 9.80 12.00 Kim & Moon, 2003 
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A recent study of the National Renewable Energy Laboratory (NREL) together 
with the U.S. Department of Energy (DOE) presents the composition of corn stover 
from a variety of commercial hybrid varieties using a rapid compositional analysis 
method known as NIR/PLS (Near-Infrared Spectroscopy/Projection-to-Latent-
Structures modeling) (Templeton et al., 2009). This study evaluated the 
compositions of 508 corn stover samples (Table 2) collected from 47 regions of 8 
corn growing countries, after 2001, 2002 and 2003 harvesting. Another recent 
study of NREL (National Renewable Energy Laboratory) shows a comparison 
between the average composition of 9 corn stover samples obtained in 2012 from 
two lots, compared to 2011, obtained from one sample from overall distribution 
(Humbird et al., 2011). 
 

Table 2. Chemical composition of corn stover 
(source: Aden et al., 2002; Humbird et al., 2011) 

 
Content (dry wt %) 

Component 
whole stover 2002 2011 

Glucan 31.90 37.40 35.05 
Xylan 18.90 21.07 19.53 
Arabinan 2.80 2.92 2.38 
Galactan 1.50 1.94 1.43 
Mannan 0.30 1.56 0.60 
Sucrose 3.60 - 0.77 
Acetyl groups 2.20 2.93 1.81 
Lignin 13.30 17.99 15.76 
Ash 3.90 5.23 4.93 
Protein 3.70 3.10 3.10 
Extractives 8.60 4.68 14.65 
 
Biochemical process 

The main biochemical processes consisting in transformation of LCM into 
bioethanol (Figure 1) are (Wooley et al., 1999; Wooley et al., 2000; Aden et al., 
2002; Aden, 2008; Humbird & Aden, 2009; Humbird et al., 2011): 
• Pretreatment. LCM is treated at higher temperatures for a short time to release 

hemicellulosic sugars to enzymatic hydrolysis (Figure 2). 
• Simultaneous saccharification and fermentation (SSF). Enzymatic hydrolysis is 

initiated in a continuous bioreactor using enzymes and then the biomass is 
inoculated with fermenting microorganisms. At this stage, most of the cellulose 
and xylose are converted into bioethanol. 

 
1. Pretreatment 
The first step in the conversion of LCM into bioethanol is reducing the size by 
pretreatment (Graf & Koehler, 2000). The goal of any pretreatment technology is 
to alter or remove structural and compositional obstacles for hydrolysis in order to 
improve the rate of enzymatic hydrolysis and the increasing yields of fermenting 
sugars from cellulose and hemicellulose (Mosier et al., 2005a). This is an 
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important tool for cellulose conversion processes, changing the structure of 
cellulosic biomass, making it more accessible for enzymes that convert 
polysaccharide into fermentable sugars (Patel et al., 2007; Balat et al., 2008). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Biochemical conversion of lignocellulosic material into bioethanol  (source: 
Foust et al., 2009) 

 
Pretreatment (Figure 3) must meet the following requirements (Silverstein, 2004): 

 Improving the ability to form carbohydrates by hydrolysis; 
 Avoiding degradation or loss of carbohydrates; 
 Avoiding the formation of byproducts that inhibit hydrolysis and 

fermentation process. 

Pretreatment can be done in various ways, such as: steam explosion (Brownell & 
Saddler, 1987; Zhang et al., 2007); liquid hot water; CO2 explosion; AFEX 
(Alizadeh et al., 2005; Teymouri et al., 2004; Teymouri et al., 2005; Indacoechea 
et al., 2006); acid pretreatment (Martín et al., 2007a); alkaline pretreatment 
(Silverstein et al., 2007; Champagne, 2007); wet oxidation; ozonolysis; 
organosolv. 
 
1.1. Physico-chemical pretreatment 

Steam explosion pretreatment 

In this process which takes place at high pressure, is introduced steam at high 
temperature into a closed room which contains LCM. After 1-5 min, the steam is 
released from the matrix chains causing breakage and separation of fibers with 
minimal loss of material (Mabee et al., 2006; Balat et al., 2008).  
Another type of steam explosion pretreatment refers to a technique in which LCM 
is rapidly heated with high pressure steam without adding any chemicals. Mixture 
of biomass/steam is kept for a period of time to promote hydrolysis of 
hemicellulose and the process is completed by decompression. Steam explosion 
involves chemical effects because acetic acid is generated by hydrolysis of the 
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acetyl groups associated with hemicellulose and can catalyze the hydrolysis and 
degradation of glucose or xylose (Mosier et al., 2005a).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Pretreatment - Fermentation Cycle  

(source: NREL - National Renewable Energy Laboratory) 
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Figure 3. Effect of pretreatment on lignocellulosic materials 

 
Liquid hot water pretreatment (LHW) 

LHW is one of the hydrothermal pretreatment methods applied for pretreatment of 
LCM (Taherzadeh et al., 2008) that benefit from the use of no chemical agents 
other than water, being more environmentally friendly technologies (Garrote et al., 
1999). The objective of LHW pretreatment is to solubilize mainly the 
hemicellulose, to make the cellulose more susceptible to enzymatic attack and to 
avoid the formation of inhibitors, such as hydroxymethylfurfural (HMF) and 
furfural (Alvira et al., 2010). The LHW pretreatment involves saturation of 
lignocellulosic biomass with water, followed by heat treatment of the slurry at 
temperatures between 120 and 200°C for 5–15 min under pressure (Kim et al., 
2009). The pH is restricted to 4–7 to minimize formation of monomeric sugars and 
sugar decomposition products (Mosier et al., 2005a; Mosier et al., 2005b). This 
hydrothermal pretreatment is easy to perform: there is a low usage of energy; the 
process is without the difficult steps of handling and recovery of chemicals; 
equipment corrosion can be excluded (Cybulska et al., 2010). The process is 
already applied to lignocellulosic biomass such as corn stover (Mosier et al., 
2005c), sugarcane bagasse (Laser et al., 2002) and wheat straw (Pérez et al., 2008). 

CO2 explosion pretreatment 

This method is based on the use of CO2 as a supercritical fluid. The supercritical 
CO2 as well as its use in extraction as solvent is capable of enhancing the 
enzymatic hydrolysis of LCM. This process can remove the lignin and increase the 
digestibility of the substrate. Co-solvents such as ethanol, acetic acid and water 
improve the delignification of LCM. CO2 forms carbonic acid in aqueous solutions, 
favoring hydrolysis of the polymers. CO2 molecules are similar in size to those of 
water and ammonia, which allow them to penetrate in the same way the pores of 
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LCM. After the release of CO2 under pressure, there is a change in the structure of 
cellulose and hemicellulose, this allows enzymes to have accessibility to the 
substrate surface. The main advantages of this treatment are: availability of 
technology at relatively low cost; it does not produce toxic degradation products; 
easy recovery after extraction; the process is considered environmentally friendly 
(Taherzadeh & Karimi, 2008). 

AFEX pretreatment (Ammonia fiber/ freeze explosion) 

AFEX pretreatment involves the injection of liquid ammonia (Hamelinck et al., 
2005). AFEX is a process in which LCM with moisture content of 15-30 % are 
placed in a pressure container with liquid ammonia. This system does not release 
any sugars but allows hemicellulose and cellulose to be attacked by enzymes and 
be reduced to soluble sugars (Dale & Moelhman, 2000; Balat et al., 2008). 

 
2. Chemical pretreatment 

Acid pretreatment 

The pretreatment process (Table 3) converts most of the hemicellulosic sugars 
from LCM into soluble sugars (glucose, xylose, arabinose, mannose) by hydrolysis 
reactions. Acetyl groups from hemicellulose are released as acetic acid. Sugar 
degradation products such as furfural and HMF can also be formed in the 
pretreatment (Humbird et al., 2011). The aim of this process is to obtain high 
yields of sugars from LCM (Lee, 2005). There are several types of acid 
pretreatment: the use of sulfuric acid (Parajó et al., 1993) hydrochloric acid 
(Kurakake et al., 2005), peracetic acid (Teixeira et al., 1999), nitric acid (Brink, 
1993), or phosphoric acid (Hussein et al., 2001). Dilute acid pretreatment is one of 
the most studied and widely used (Karimi et al., 2006; Dale & Moelhman, 2000; 
Tucker et al., 2003; Chung et al., 2005; Kim et al., 2005; Agbogbo & Wenger, 
2006).  
There are two types of dilute acid pretreatment processes: at moderate temperatures 
(T < 160 ˚C) and higher temperatures (T > 160 ˚C) (Silverstein et al., 2007). Dilute 
acid pretreatments at moderate temperatures are using sulfuric acid or phosphoric 
acid to convert LCM, including hemicellulosic fraction, into soluble sugars, 
followed by enzymatic hydrolysis of cellulosic fraction to glucose (Um et al., 
2002). Higher pretreatment temperatures have a higher yield of xylose recovery 
and increased enzymatic digestibility of cellulosic residues (Tucker et al., 2003).  

Alkaline pretreatment 

Alkaline pretreatment uses temperatures and low pressures compared to other 
technologies. This process can remove lignin without having large effects on other 
components (McMillan, 1997). NaOH treatment increases internal surface of LCM, 
decreases the degree of crystallinity and breaks the lignin structure (Li et al., 2004). 
Alkaline pretreatment reduces lignin and hemicellulose content of biomass, 
increasing the surface and allowing penetration of water molecules in the inner 
layer as well as breaking connections between hemicellulose and lignin (Lee, 
2005). This treatment removes acetyl and uronic acid from hemicellulose, which 
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slows the enzyme accessibility of hemicellulose and cellulose surface (Ramirez, 
2005; Balat et al., 2008). 

Wet oxidation pretreatment 

LCM is subjected to the action of water at elevated temperatures in the presence of 
oxygen (Schmidt & Thomsen, 1998). This treatment has the advantage of not 
generating the degradation products, such as furfural and HMF (Klinke et al., 
2002; Varga et al., 2003). The presence of oxygen makes this process more 
expensive but allows working at lower temperatures than the autohydrolysis. 

Ozonolysis pretreatment 

Ozone can be used for the degradation of lignin and hemicellulose in many LCM. 
This treatment has a delignification effect on the feedstock and practically does not 
affect the cellulose. The main advantages of the ozonolysis process are: high 
efficiency in removing lignin; it does not produce toxic products which could affect 
the following processes; reactions are carried out under conditions of ambient 
temperature and atmospheric pressure (Vidal & Molinier, 1988). 

Organosolv pretreatment 

Organosolv pretreatment represents an alternative method for the delignification of 
LCM. This method is using an organic or aqueous organic solvent with addition of 
a catalyst (HCl or H2SO4) to break the internal lignin and hemicellulose bonds. 
Among the organic solvents used in the process are: methanol, ethanol, acetone and 
ethylene-glycol (Sun & Cheng, 2002). 
 
Table 3. Comparison between different pretreatment methods for improving the enzymatic 

hydrolysis of LCM 
 

Feedstock 
Type of 

pretreatment 
Temp
(°C) 

Time 
(min) 

Solid 
loading 

Enzyme 
loading 

Yield 
(%) 

References 

Eucalyptus 
globulus 

Steam 
explosion 

210 4 101 154 62.513 Ballesteros 
et al., 2004 

Populus 
nigra 

Steam 
explosion 

210 4 101 154 71.213 Ballesteros 
et al., 2004 

Sorghum 
sp. 

Steam 
explosion 

210 2 101 154 62.513 Ballesteros 
et al., 2004 

Brassica 
carinata 

Steam 
explosion 

210 8 101 154 60.913 Ballesteros 
et al., 2004 

Wheat 
straw 

Steam 
explosion 

190 8 101 154 68.113 Ballesteros 
et al., 2004 

Corn 
stover 

Liquid hot 
water 

195 15 131 154 20115 Xu et al., 
2010 

Rapeseed 
straw 

Liquid hot 
water 

193 27 51 154 94.8514 Díaz et al., 
2010 

Olive 
stones 

Liquid hot 
water 

200 2 - 82.88 0.2516 Cuevas et 
al., 2009 

Wheat 
straw 

Liquid hot 
water 

220 - 41 154+158 9214 Pérez et 
al., 2008 

Hybrid Liquid hot 200 10 151 404 76.714 Kim et al., 
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Feedstock 
Type of 

pretreatment 
Temp
(°C) 

Time 
(min) 

Solid 
loading 

Enzyme 
loading 

Yield 
(%) 

References 

poplar water 2009 
Olive tree 
residues 

Liquid hot 
water 

220 10 51 154+158 7514 Cara et al., 
2007 

Corn fiber Liquid hot 
water 

215 - - 154 8617 Allen et 
al., 2001 

Corn 
stover 

AFEX 90 5 12 31.35+33.36 88.514 Balan et 
al., 2009 

Switch 
grass 

AFEX 100 5 - 154+404 9314 Alizadeh et 
al., 2005 

Rice straw CO2 
explosion 

110 30 - 304+157 32.413 Gao et al., 
2010 

Sugarcane 
bagasse 

CO2 
explosion 

220 5 21 654+178 97.213 Ferreira-
Leitão et 
al., 2010 

Wheat 
straw 

Acid 
hydrolysis 

121 60 - 24+110 76.514 Saha et al., 
2005 

Wheat 
straw 

Wet 
oxidation 

195 10 21 674+2466 9014 Pedersen & 
Meyer, 
2009 

Clover and 
ryegrass 

Wet 
oxidation 

195 10 21 254+0.469 93.614 Martín et 
al., 2008 

Sugarcane 
bagasse 

Wet 
oxidation 

195 15 21 254+0.469 74.914 Martín et 
al., 2007b 

Sugarcane 
bagasse 

Organosolv 175 60 101 154+30011 92.813 Mesa et 
al., 2010 

Pinus 
taeda 

Organosolv 170 60 21 84+1611 7014 Sannigrahi 
et al., 2010 

Pinus 
rigida 

Organosolv 180 - 11 70012+2507 8014 Park et al., 
2010 

Pinus 
radiata 

Organosolv 195 5 21 204+4011 99.513 Araque et 
al., 2007 

Pine beetle 
killed 

Organosolv 187 60 23 204+4011 10014 Pan et al., 
2008 

Lodgepole 
pine 

Organosolv 187 60 23 204+4011 10014 Pan et al., 
2008 

Miscanthus 
giganteus 

Organosolv 170 60 23 204+4011 10014 Brosse et 
al., 2009 

1 solid (g solid/100 g dissolution); 2 glucan (g glucan/100 g dissolution); 3 cellulose (g cellulose/100 g dissolution); 4 

cellulase (FPU/g dry matter); 5 cellulase (mg protein/g of glucan); 6 β-glucosidase (mg protein/g of glucan); 7 β-
glucosidase (CBU/g dry matter); 8 β-glucosidase (IU/g dry matter); 9 β-glucosidase (CBU/ml); 10 pectinase (g 

pectinase/100 g dry matter); 11 xylanase (IU/g dry matter); 12 endo-glucanase (EGU/g dry matter); 13 ethanol conversion 
(g ethanol/100 g theoretical ethanol); 14 glucose (g glucose/100 g potential glucose); 15 ethanol (g ethanol/kg of 

substrate); 16 ethanol (g ethanol/g of substrate);  17 ethanol (g ethanol/100 g potential ethanol); FPU – Filter Paper 
Units; IU – International Units; CBU – Cellobiase Units; EGU – Endo-Glucanase Units 

 
Conclusions 

Pretreatment process is an important step for bioethanol production from LCM, 
changing the structure of cellulosic biomass, making it more accessible for 
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enzymes in order to improve the rate of enzymatic hydrolysis and the increasing 
yields of fermenting sugars from cellulose and hemicellulose. The main advantages 
of pretreatment methods for LCM are: steam explosion causes hemicellulose 
degradation and lignin transformation; liquid hot water, CO2 explosion and wet 
oxidation do not cause formation of inhibitory compounds; AFEX increases 
accessible surface area; acid pretreatment hydrolyzes hemicellulose to xylose and 
other sugars; alkaline pretreatment removes hemicelluloses and lignin; ozonolysis 
reduces lignin content; organosolv hydrolyzes lignin and hemicellulose. LCM is 
economically attractive for obtaining bioethanol as an alternative fuel source. 
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