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ABSTRACT 
 

The paper studies a therapeutic apparatus from the point of view of the 
influence of damping over its functioning, for various working conditions. 
The apparatus is intended for the subjects suffering from severe pains, 
taking into account that the back pain is the affection of the 21s t  century, 
and it aims to provide an objective reference for the progress and the 
result of the treatment, useful for both the physician and for the subject. 
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1. GENERAL NOTIONS 
Statistical data show that approximately 

seven out of ten persons suffer from back pains 
once or several times in a lifetime, while 7% of 
the population is affected daily by the same 
disease. 

Scientific research highlighted that 
movement acts as a clinical treatment for 
painful joints, so that bed rest is no more 
necessary for such affections. 

As a consequence, taking into account both 
medical and economical reasons – eliminating 
or reducing pain and fast recovery for normal 
activity – a set of medical concepts and the 
corresponding apparatuses were developed. 
Some of these apparatuses are based on the 
system of active medical recovery practiced 
against the deconditioning syndrome. 

Such therapeutical techniques through 
motion allow for the balanced recovery of all 
major muscle groups, the recovery of the 
normal coordination by practicing the 
movements in a controlled manner, 
improvement of the metabolism, the 
fortification of muscles and of the spinal 
column and the relaxation of the muscle mass. 

The medical recovery system for the spinal 
column treats non-specific back pains, 
degenerative modifications, herniated discs and 

post-operative situations, by recovery programs 
specific to each subject. 

By means of such apparatuses, the force 
and the mobility of the backbone are tested in 
all possible movement planes, while the results 
are stored, in order to achieve a relevant 
individual profile and to compare this profile 
with predictive data. 

The characteristics of the damping system 
of the apparatus have an important role for the 
success of the treatment and for the evaluation 
performed during the program. 

2. PRESENTATION OF THE STUDY 
MODEL 

The model of such a therapeutical device, 
chosen to analyze the influence of damping [5], 
is illustrated in Figure 1. The device allows to 
stabilize the pelvis, so that the exercises should 
be performed in safe conditions, without pains, 
the movement being controlled and allowing to 
isolate the target muscle groups. 

The device consists in the following 
elements: 
1. the case of the device; 
2. elastic bar, hinged in point A  and fixed in 

point B , of length a3 ; 
3. spring system with the equivalent elasticit y 

constant 1k ; 
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4. damper, whose damping coefficient 1c  
includes the characteristic of element 1 ; 

5. adjustable mass 1m ; 
6. spring system with the equivalent elasticity 

constant 2k ; 
7. damper with the damping coefficient 2c ; 
8. adjustable mass 2m ; 
9. rigid transmission bar, hinged in point C , of 

length a3 ; 
10. torsion spring of elasticity constant tk ; 
11. spring system with the equivalent elasticity 

constant 3k ; 
12. damper with the damping coefficient 3c ; 
13. transmission system of the periodical force 

 tF , fixed on the element 9  and on the 
damping system 12 ,11  in point D , as well as 
on the plate 14  in point E ; 

14. rigid transmission plate; 
15. traction rings; 
16. swinging support of the body, which allows 

for the motion in sitting, as well as in 
standing position. 
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Fig. 1. Study model 

The motion is produced by acting the rings 
15  and is transmitted to the system through 
elements 14  and 13 . By varying the sizes of 
masses 1m  and 2m , the direction angle  , the 
position of the body,  as well as the type of 
force  tF  used, the apparatus allows, under the 
physician’s prescription, to solve medical 
recovery problems or to perform conservation 
exercises. 

3. DIFFERENTIAL EQUATIONS OF 
MOTION OF THE SYSTEM 

The presented mechanical model has two 
degrees of freedom. Displacements 1q  and 2q  
were chosen as independent generalized 

coordinates. The third displacement is linked to 
the second one by the kinematical relation [3] 
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The elasticity constant of the bar 2  is: 
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The equivalent elasticity constant for the 
bar 2  and for the spring 1 , considered as 
elastic elements connected in series, is: 
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The differential equations of the small 
oscillations of the system can be determined by 
using the formalism of the Lagrange equations 
of the second species [1], 
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where the following notations were 
introduced [1]: 
 the kinetic energy of the system, 

 2
22

2
11 2

1
2
1 qmqmE   , (5) 

 the potential energy of the system, 
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 the Rayleigh dissipation function 
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2
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2
1 qcqcD ech    (7) 

 the generalized perturbation force 

      costFtQ . (8) 

By calculating and replacing the 
derivatives in system (4), the differential 
equations of the small oscillations of the system 
result (considering 030 ): 
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By choosing the following expressions for 
the parameters of the apparatus, 
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system (9) leads to the decoupled equation 
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which can be rewritten in the form 

  tfqqq difdifdif  22  , (13) 

where 

 12 qqqdif  , (14) 
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The differential equation (13) will be 
integrated with the initial conditions 

     00,00  tqtq difdif  . (16) 

In the following, two forms of the 
perturbating force will be analyzed. 

4. CONSTANT PERTURBATION 
FORCE 

For a constant perturbation force, the 
steady state solution of equation (13) is of the 
form of a Duhamel integral [1], 
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where 1t  is a constant, 

 21 D  (18) 

is the circular eigenfrequency of the damped 
vibration, 
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is the damping ration and 
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By calculating the integral (17), and by 
introducing the non-dimensional quantity 
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the following expression is obtained: 
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This expression can be rewritten as 
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where 
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The function  difq̂  is represented in 
Fig. 2, for various values of the damping 
ratio D . 

The force acting upon the damping system 
is 

 difdif qckq F , (25) 

where, by differentiating (22), 
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By substituting (22) and (26), expression 
(25) takes the form 
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Fig. 2. Variation of function difq̂  for various 
values of the damping ratio D : 

0D   , 01.0D   , 1.0D   , 
3.0D   , 5.0D   , 8.0D (□) 
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Fig. 3. Variation of function F̂  for various 
values of the damping ratio D : 

0D   , 01.0D   , 1.0D   , 
3.0D   , 5.0D   , 8.0D (□) 

 
The force F  is represented in Fig. 3 as a 

function of rigidF . 

5. TRIANGULAR PERTURBATION 
FORCE 

For a triangular periodical perturbation 
force (Fig. 4), which is antisymmetrical 
(    tFtF  ), the Fourier series expansion 
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Fig. 4. Triangular perturbation force 

The Fourier series becomes: 
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that allows to write the differential equation of 
motion (13) in the form: 
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For the undamped oscillation  0 , 
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which, introduced in the differential equation, 
allows to determine the coefficients 
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i.e. the expressions 1A , 2A ,  3A ,…, for various 

values of the ratio 

 . From the analysis of the 

obtained results, it follows that, for certain 
values of this ratio, the coefficients of the 
series (32) decrease sharply (for example, 

00297.0
1

3 
A
A

 if 95.0

 ). Consequently, the 

study of the damped system can be made in a 
first order approximation, on the equation 
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The solution of the homogeneous linear 
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where 
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The general solution of equation (34) is 
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The function  ,ˆ difq , where  

 
0

dif 

0853.0
ˆ

A
qk

qdif


 ,  (42) 

is represented in Figure 5, for various values of 
the damping ratio D . 

A procedure similar to the one used for the 
non-dimensionlization (29) leads, in this 
case, to 

  0723.11ˆ AF/F  . (43) 

The function  F̂  is represented in 
Figure 6 for various values of the damping 
ratio D . 
 

difq̂

 

0 1 2 3 4 5 6 7 8 9 10
-15

-10

-5

0

5

10

15
variatia functiei qdif̂

   
Fig. 5. Variation of function difq̂  for various 

values of the damping ratio D : 
0D   , 01.0D   , 1.0D   , 
3.0D   , 5.0D   ,  8.0D (□) 
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Fig. 6. Variation of function F̂  for various 
values of the damping ratio D : 

0D   , 01.0D   , 1.0D   , 
3.0D   , 5.0D   ,  8.0D (□) 

6. RESULTS AND CONCLUSIONS 
It can be seen from the numerical studies 

presented above, that the greatest relative 
displacement and the greatest value of the 
non-dimensional force are obtained for 0D  
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and both  
max

ˆdifq  and  maxF̂ decrease with the 
damping ratio. 

For the constant perturbation force, these 
values are 
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and 
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while the highest value of the force acting upon 
the damping system occurs at approximately 

3 , which corresponds to the time 

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1t . 

For the triangular perturbation force, 
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while the highest value of the force acting upon 
the damping system occurs at approximately 

2 , which also corresponds to the time 




1t .  

The analytical model and the numerical 
study presented in the paper are useful for the 
calibration and optimization of the medical 
apparatus, in order to satisfy optimally meet the 
necessities of the therapeutical process. 
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