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ABSTRACT 
 

This paper deals with dynamics of compact rigid structures with elastic 
insulation and subjected to various vibratory, shock or seismic actions. It 
was supposed a simple rigid model with six degrees of freedom, affected by 
one or both vertical symmetry planes. Modal analysis was performed for 
six different rigidity cases. Concluding remarks dignify the correlation 
between isolation characteristics and natural pulsation in terms of 
eigenvalues and eigenvectors. 
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1. INTRODUCTION 
The structural systems are made of material 

systems as solid bodies (rigid or deformable) 
with elastic or viscoelastic linkages subjected 
to external dynamic actions, having as 
consequences the generation of inertial effects. 

Dynamic behavior of structural systems is 
described by mathematical equations that take 
different forms from a specific case to another.  
The representation in calculations of the solid 
bodies (rigid or deformable), of the linkages 
and of the whole system is based on the concept 
of dynamic system and dynamic model.  

The dynamic system is an abstraction of the 
physical and mechanical characteristics of the 
structural system whose mechanical condition 
changes during time. 

Any dynamical system is characterized by 
some specific qualitative properties (inertial, 
dissipative, elastic) represented by the values of 
measurable parameters (mass, moments of 
inertia, the damping coefficient, the rigidity/ 
flexibility coefficient). 

The dynamic model is essentially an 
idealized form,  simplified or schematized of a 
dynamic system in order to reduce the 
numerical analysis operations without that the 

real processes (qualitative and quantitative)  
being significantly modified. 

The dynamic response is the instantaneous 
state of a dynamic system over which have been 
applied external dynamic actions, real and 
variable during time. The dynamic response can 
be expressed through fundamental kinematic 
parameters (displacement, velocity, accelera-
tion) or through derived parameters (energy, 
sectional strains, stresses, deformations, 
generalized forces). 

2. THEORETICAL APPROACHES 
It is proposed the complex dynamic model 

of a rigide structure with six degrees of 
freedom which consists of three translational 
linear coordinates x, y, z and three rotational 
angular coordinates zyx  ,, . For the pro-
posed model, we will study the behavior of the 
structure under the vibration action and in the 
presence of elastic elements. 

Thus, the motion equations of the rigid 
with elastic linkages are written: 

 
0 qCqA            (1) 
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Fig.1. Model of the rigid system with six degrees of freedom, elastic supported in four points 

on inferior base, with a longitudinal vertical plane of symmetry 
 

In an analytical form, the system is: 
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The system (2) is difficult to solve 

analytically or using the matriceal formalism 
because it requires a large amount of 
calculation, and the sixth degree polynomial 
equation of the natural pulsations involves 
difficulties in solving and analysis. The 
solution is the automatic numerical calculus of 
the differential motion equations system of 
second degree, resulting a system with 12 
differential equations of first degree, which can 
be integrated without difficulty. On the other 
hand, at the use of numerical analysis appears 
as a disadvantage the highlighting of the 
influence of the dynamic system physical 
characteristics. Thus, the analysis is done by 
repeated tests, using different sets of values for 
the input data. To this end, both for the 
elimination of coupling movements and to 
analytically solve the dynamic system model, 
certain sized and structure requirements may be 
imposed to the system, leading to a decoupling 
of the equation system into simple subsystems, 
easier to integrate. 

As discussed above,  we consider the case 

of the rigid structure, elastically supported in 
four points on inferior base, with a longitudinal 
vertical plane of symmetry yCz as in Figure 1. 
In this situation a few simplifying assumptions 
are valid: 
 the dimensions of the analyzed rigid structure are 

symmetrical in relation to the considered plane 
 the elastic linkages are identical, have 

symmetrical positions  and are located in the 
same horizontal plane 
Due to the  mentioned symmetries, a part of 

coupling terms from stiffness matrix are 
canceled, and we have: 
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Through the disappearance of the coupling 

terms, the system decouples into two 
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subsystems described by coordinates (y, z, x ) 

and (x, y , z ).  
For the two decoupled subsystems can be 

written the equations of the free vibrations. 
Thus, we have for the subsystem (y, z, x ): 
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and for the subsystem (x, y , z ): 
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Further it is proposed an analyze of the 

vibrations of the two subsystems characterized 
each by three dynamic coordinates (degrees of 
freedom) coupled. 

For each of the two subsystems, with 
elastic linkages and three degrees of freedom, 
the vector of the generalized coordinates is: 

 

 Tqqqq 321 ,,          (6) 

 
Using the classical mathematical apparatus, 

were written the quadratic forms of the system 
energies and then the case II Lagrange 
equations were used for obtaining motion 
equations, written matriceal   in the form (1). 
The solution for the system (1) has been sought  
as: 
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a  is the vector of the motion 

amplitudes. 
Taking into account the proposed form of 

the system solution, equation (1) becomes: 
 

  02  aApC                              (8) 
 

Equation (8) has nonzero solutions only if 
the determinant of the matrix is zero. This 
equation is third degree with p2 as variable and 
represents the equation of the natural pulsations 
of the dynamic system with three degrees of 

freedom. Through analytically or numerically 
resolving the equation (8), we obtain the three 
natural pulsations of the system p1, p2, p3. 

3. CASE STUDY 
The case study was made for two types of 

symmetry of the proposed structure, namely: 
 considering the structure having a 

longitudinal vertical plane of symmetry, case for 
which as numerical values were proposed: 

a=7.5 m 
b3=12 m 
b2=8 m 
h=7 m 
Jx=42x106 kgm2 
Jy=25x106 kgm2 
Jz=17.5x106 kgm2 

 considering the structure with two vertical 
planes of symmetry, one longitudinal and one 
transversal, case for which as numerical values were 
proposed: 

a=7.5 m 
b3=10 m 
b2=10 m 
h=7 m 
Jx=35x106 kgm2 
Jy=25x106 kgm2 
Jz=17.5x106 kgm2 

For both sets of values, the mass of the 
analyzed structure was considered with the 
value m = 3x106 kg. Also, in both cases were 
proposed for study six sets of values of 
stiffness coefficients as follows in Table 1.  

After completing the mathematical 
calculus, we obtain values for the parameters 
initially proposed - the eigenvalues and 
eigenvectors of the analyzed system. These 
values are summarized in Tables 2, 3, 4, 5. 
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Table 1 The proposed sets of values for the stiffness coefficients 
 Var 1 Var 2 Var 3 Var 4 Var 5 Var 6 

kx [N/m] 2x106 4x106 8x106 16x106 32x106 64x106 
ky [N/m] 2x106 4x106 8x106 16x106 32x106 64x106 
kz [N/m] 8x106 16x106 32x106 64x106 128x106 256x106 

 
Table 2 The system parameters assessment for the subsystem I in the case with one vertical plane of symmetry  

Case with a longitudinal vertical plane of symmetry - subsystem I 

 eigen 
val 
p2 

nat puls 
p 

freq 
     f 

eigen 
vect 1 
  

eigen 
vect 2



eigen 
vect 3


eigen 
vect 1 
norm

 n

eigen 
vect 2 
norm 
n

eigen 
vect 3 
norm
n

89.3 9.4484 1.5038 0.2037 0.9990 0.0458 1.0000 1.0000 1.0000 
2.4 1.5376 0.2447 0.2564 0.0416 -0.9988 1.2592 0.0416 -21.8008 V1 
10.3 3.2044 0.5100 0.9449 -0.0162 0.0187 4.6396 -0.0162 0.4072 
178.5 13.3621 2.1266 0.2037 0.9990 0.0458 1.0000 1.0000 1.0000 
4.7 2.1745 0.3461 0.2564 0.0416 -0.9988 1.2592 0.0416 -21.8008 V2 
20.5 4.5317 0.7212 0.9449 -0.0162 0.0187 4.6396 -0.0162 0.4072 
357.1 18.8968 3.0075 0.2037 0.9990 0.0458 1.0000 1.0000 1.0000 
9.5 3.0752 0.4894 0.2564 0.0416 -0.9988 1.2592 0.0416 -21.8008 V3 
41.1 6.4088 1.0200 0.9449 -0.0162 0.0187 4.6396 -0.0162 0.4072 
714.2 26.7241 4.2533 0.2037 0.9990 0.0458 1.0000 1.0000 1.0000 
18.9 4.3490 0.6922 0.2564 0.0416 -0.9988 1.2592 0.0416 -21.8008 V4
82.1 9.0634 1.4425 0.9449 -0.0162 0.0187 4.6396 -0.0162 0.4072 
1428.4 37.7936 6.0150 0.2037 0.9990 0.0458 1.0000 1.0000 1.0000 
37.8 6.1504 0.9789 0.2564 0.0416 -0.9988 1.2592 0.0416 -21.8008 V5 
164.3 12.8176 2.0400 0.9449 -0.0162 0.0187 4.6396 -0.0162 0.4072 
2856.7 53.4483 8.5066 0.2037 0.9990 0.0458 1.0000 1.0000 1.0000 
75.7 8.6980 1.3843 0.2564 0.0416 -0.9988 1.2592 0.0416 -21.8008 V6 
328.6 18.1268 2.8850 0.9449 -0.0162 0.0187 4.6396 -0.0162 0.4072 

 
Table 3 The system parameters assessment for the subsystem II in the case with one vertical plane of symmetry 

Case with a longitudinal vertical plane of symmetry - subsystem II 

 eigen 
val 
p2 

nat puls 
p 

freq 
    f 

eigen 
vect 1 
  

eigen 
vect 2



eigen 
vect 3


eigen 
vect 1 
norm

 n

eigen 
vect 2 
norm 
n

eigen 
vect 3 
norm
n

2.1 1.4601 0.2324 -0.9996 -0.2160 -0.0023 1.0000 1.0000 1.0000 
90.0 9.4861 1.5098 -0.0256 0.9079 -0.2669 0.0256 -4.2028 116.9657 V1 
71.5 8.4550 1.3457 -0.0105 0.3592 0.9637 0.0105 -1.6626 -422.2837 
4.3 2.0649 0.3286 -0.9996 -0.2160 -0.0023 1.0000 1.0000 1.0000 
180.0 13.4153 2.1351 -0.0256 0.9079 -0.2669 0.0256 -4.2028 116.9657 V2 
143.0 11.9571 1.9030 -0.0105 0.3592 0.9637 0.0105 -1.6626 -422.2837 
8.5 2.9202 0.4648 -0.9996 -0.2160 -0.0023 1.0000 1.0000 1.0000 
359.9 18.9721 3.0195 -0.0256 0.9079 -0.2669 0.0256 -4.2028 116.9657 V3 
285.9 16.9100 2.6913 -0.0105 0.3592 0.9637 0.0105 -1.6626 -422.2837 
17.1 4.1298 0.6573 -0.9996 -0.2160 -0.0023 1.0000 1.0000 1.0000 
719.9 26.8306 4.2702 -0.0256 0.9079 -0.2669 0.0256 -4.2028 116.9657 V4
571.9 23.9143 3.8061 -0.0105 0.3592 0.9637 0.0105 -1.6626 -422.2837 
34.1 5.8405 0.9295 -0.9996 -0.2160 -0.0023 1.0000 1.0000 1.0000 
1439.8 37.9442 6.0390 -0.0256 0.9079 -0.2669 0.0256 -4.2028 116.9657 V5 
1143.8 33.8199 5.3826 -0.0105 0.3592 0.9637 0.0105 -1.6626 -422.2837 
68.2 8.2597 1.3146 -0.9996 -0.2160 -0.0023 1.0000 1.0000 1.0000 
2879.5 53.6612 8.5405 -0.0256 0.9079 -0.2669 0.0256 -4.2028 116.9657 V6 
2287.6 47.8286 7.6122 -0.0105 0.3592 0.9637 0.0105 -1.6626 -422.2837 
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Table 4 The system parameters assessment for the subsystem I in the case with two vertical planes of symmetry 

Case with two vertical planes of symmetry (longitudinal and vertical) - subsystem I 

   eigenval 
p2 

  nat puls 
p 

 freq 
   f 

 eigenvect 1 
 

  eigenvect 2 
  

eigenvect 3 
  

2.4 1.5391  0.2450  -0.9999 -0.1830 0 
102.9 10.1453  1.6147 0 0 1.0000 V1 
10.7 3.2660  0.5198  0.0160 -0.9831 0 
4.7 2.1766  0.3464  -0.9999 -0.1830 0 
205.9 14.3476  2.2835 0 0 1.0000 V2 
21.3 4.6188  0.7351  0.0160 -0.9831 0 
9.5 3.0782  0.4899  -0.9999 -0.1830 0 
411.7 20.2905  3.2293 0 0 1.0000 V3 
42.7 6.5320  1.0396  0.0160 -0.9831 0 
19.0 4.3532  0.6928  -0.9999 -0.1830 0 
823.4 28.6952  4.5670 0 0 1.0000 V4
85.3 9.2376  1.4702  0.0160 -0.9831 0 
37.9 6.1563  0.9798  -0.9999 -0.1830 0 
1646.8 40.5811  6.4587 0 0 1.0000 V5 
170.7 13.0639  2.0792  0.0160 -0.9831 0 
75.8 8.7064  1.3857  -0.9999 -0.1830 0 
3293.6 57.3903  9.1340 0 0 1.0000 V6 
341.3 18.4752  2.9404  0.0160 -0.9831 0 

 
 
 
Table 5 The system parameters assessment for the subsystem II in the case with two vertical planes of symmetry 

Case with two vertical planes of symmetry (longitudinal and vertical) - subsystem II 

   eigenval 
       p2 

  nat puls 
p 

 freq 
   f 

    eigenvect 1 
 

eigenvect 2 
   

   eigenvect 3 
    

2.2  1.4757  0.2349  -0.9997 0.2133 0 
88.2  9.3898  1.4944  -0.0262 -0.9770 0 V1 
71.4  8.4515  1.3451 0 0 1.0000 
4.4  2.0869  0.3321  -0.9997 0.2133 0 
176.3  13.2792  2.1135  -0.0262 -0.9770 0 V2 
142.9  11.9523  1.9023 0 0 1.0000 
8.7  2.9514  0.4697  -0.9997 0.2133 0 
352.7  18.7797  2.9889  -0.0262 -0.9770 0 V3 
285.7  16.9031  2.6902 0 0 1.0000 
17.4  4.1739  0.6643  -0.9997 0.2133 0 
705.4  26.5585  4.2269  -0.0262 -0.9770 0 V4
571.4  23.9046  3.8045 0 0 1.0000 
34.8  5.9027  0.9394  -0.9997 0.2133 0 
1410.7  37.5593  5.9778  -0.0262 -0.9770 0 V5 
1142.9  33.8062  5.3804 0 0 1.0000 
69.7  8.3477  1.3286  -0.9997 0.2133 0 
2821.4  53.1169  8.4538  -0.0262 -0.9770 0 V6 
2285.7  47.8091  7.6091 0 0 1.0000 
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Fig. 2. The dependence between the natural pulsations of the system and the rigidity in the horizontal 

direction 
 

Based on the values obtained for the three 
natural pulsations of the system in the six cases 
proposed, it was realized a graphic (Figure 2) of 
the dependence between the natural pulsations 
and the rigidity in the horizontal direction, 
denoted by kx. 

4. CONCLUSIONS 
It should be mentioned that the stiffness in 

the x direction is equal to that in the y direction 
and stiffness in the z direction is a linear 
combi-nation of the two others. Therefore we 
obtained for the eigenvectors identical values, 
regardless of the values of the stiffness 
coefficient consi-dered in calculus.  

As an independent variable for the 
representation of the pulsation evolution was 
chosen the stiffness in the x direction, denoted 
by kx . 

The evolution of the pulsations 
corresponding to the eigenvalues follows the 
natural tendency imposed by the pairs of values 
considered for rigidities. The correlative 
analysis of each set of eigenvalues induces the 
following conclusion, namely that linear 
combinations between the stiffness in the 
horizontal plane and the one in the vertical 
plane require similar evolutions.   
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