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ABSTRACT 
 

The article is taking into consideration a nonlinear model for the damping, 
where the damping coefficient has a polynomial variation function of the 
velocity. The differential equation of the movements of the non-linear 
1DOF system can be solved only using numerical methods. The study gives 
the physical and mathematical modeling of the dynamics of 1DOF 
mechanical systems. It also puts forward two quantitative indexes of 
nonlinearity (the nonlinearity index of spectral amplitudes, the 
nonlinearity index of spectral power) in order to indicate how big is the 
nonlinearity grade of the system. 
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1. INTRODUCTION 
The usual dynamics approaches of 

vibrating machines and equipment consider that 
the mechanical system (with finite DOF) has 
discrete components (masses, dampers and 
elastic springs) with linear behavior. But, there 
are a lot of situations when the linear / 
linearized model of the vibrating systems 
cannot explain some resonance phenomena at 
the superior or inferior frequencies compared to 
the driving vibrator frequency or the necessity 
to supercharge the motor of the vibrator. In this 
case, a model of the system with nonlinear 
elasticity and / or damping can lead to some 
more accurate theoretical results. 

Physical and mathematical modeling of 
linear elastic mechanical systems leads to the 
second order differential linear equations, with 
constant coefficients. These equations which 
model with small enough errors the dynamic 
behavior of the system are the result of 
simplifying assumptions involving structural 
and geometric linearity of the mass / inertia, 
elasticity and damping. 

Nonlinear differential equation of an 
autonomous 1DOF mechanical system has the 

general form 
 

        tFqq,qcqq,qbqq,qa   , (1) 
 
where: q/q/q   are generalized coordinate / 
velocity / acceleration 
  q,qa   - inertial coefficient 
  q,qb   - damping coefficient 
  q,qc   - elasticity coefficient 

In most cases, the nonlinear mechanical 
elastic systems have constant inertial 
characteristics (mass, moments of inertia), 
nonlinear behavior being given by dissipative 
and elastic elements. In general, nonlinearities 
of elasticity occur in elastic-force strain 
relationship and the relationship between strain 
rate and dissipative force resistance element 
requires linear or nonlinear damping behavior. 
Under these conditions, nonlinear differential 
equation system has the form 

 
      tFqqcqqbqa   , (2) 

 
damping coefficient being function of speed 
and stiffness coefficient function of elongation. 
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For a mechanical elastic 1DOF system with 
nonlinear damping, the differential equation of 
forced vibration is as follows: 

 
    tFcqqqbqa   , (3) 

 
For the technical and technological 

mechanical systems, the dissipative nonlinear 
behavior is determined by the connecting 
elements made from neoprene, hydraulic and 
hydro-pneumatic shock absorbers or by the 
interaction between the work equipment and 
environment. 

2. 1DOF MECHANICAL SYSTEM 
WITH NONLINEAR DAMPING 
Figure 1 shows the simplified model of an 

inertial vibrator conveyor, with the following 
notations: 1 – the sieve, 2 – the transporter 
basis, 3 – the elastic support system (steel 
bending plates), 4 – the inertial vibrator ( 0m  is 
the total unbalanced mass). 
 

 
Fig. 1. Simplified model of the inertial 

vibrating technological equipment 
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Fig. 2. Mechanical 1DOF model with nonlinear 

damping of the vibrating equipment 
 

Figure 2 shows the model of the conveyor 
driven by an inertial vibrator with two eccentric 
synchronized masses (the model Figure 2 is the 
vertical plane projection of the real model 
Figure 1). The used notations are: 
C – the mass center of the vibrating system;  
m  – the total mass of the conveyor (includes 
the vibrator mass); 

0m  – the total eccentric masses; 

k  – elasticity coefficient of the conveyor’s 
steel springs; 
b  – the dissipation coefficient (that includes 
the damping of the eaves’ seat and the 
equivalent dissipation of the transported 
material); 
Z  – the vibrating direction; 
z  – the displacement of the conveyor’s eaves; 

mz  – displacement of unbalanced / eccentric 
masses; 
  – rotation angle of the eccentric masses; 
  – rotation velocity of the eccentric masses. 

The measured and the calculated data of the 
real inertial vibrating conveyor used to 
numerical simulation are: 
♦ Kg250m   - the total vibrating mass of the 
conveyor (measured); 

♦ 15 Nm103k   - the coefficient of elasticity 
of steel springs (measured); 

♦ 13 Nsm1012b   - the equivalent 
coefficient of dissipation (calculated); 
♦ rpm948n   - the rotational speed of eccentric 
masses (measured); 
♦ Hz8.15f   - the frequency of inertial 
excitation (calculated); 
♦ s/rad27.99  - the pulsation of inertial 
excitation (calculated); 
♦ Kgm2583.1rm0   - the static moment of the 
eccentric masses (calculated); 
♦ kN4.12F0   - the amplitude of one direction 
inertial force (calculated). 

The calculated data of the inertial vibrating 
conveyor modelled as a linear viscous elastic 
mechanical system are: 
♦ Hz513.5fn   - the eigenfrequency of the 
conveyor; 

♦ 1
cr Nsm5.17320b   - the critical value of the 

damping coefficient; 
♦ s/rad24n   - the damping factor; 

6928.0  - the linear damping ratio; 
♦ mm033.5Ast   - the steady-state forced 
vibration amplitude ( f

f
st AlimA


 ). 

3. DYNAMIC ANALYSIS OF THE 
1DOF MECHANIC SYSTEM 

3.1. Model of the mechanical system 
with linear damping 

Acc. to [1] [3], the steady-state vibrations 
equations of the conveyor driven by the inertial 
vibrator are done by 
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 








tsinzgrmM
tcosrmkzzbzm

0M

2
0


 , (4) 

 
where MM  is the necessary motor moment and 

2ms81.9g  . 
 

First eq. from (4) can be written as follows 
 

  cosrzpzn2z 22 , (5) 
 

where we have used the notations: 

m2
bn   is the damping factor 

m
kp   - the eigenpulsation of the 1DOF 

linear system 

m
m0  - dimensionless unbalanced mass 

t  - angular displacement of the rotary 
unbalanced masses. 

The forced steady-state vibration of the 
conveyor is described by the particular solution 
of eq. (5) as follows 

 
  0ff tcosAz  , (6) 

 
where the amplitude is 

 

 

  22222

2
f

n4p

rA



  (7) 

 
and the phase shift between harmonic inertial 
force and the conveyor vibration is: 

 

 220
p

n2arctan



  (8) 

 
From the second eq. of (4), we can write 

the necessary motor moment MM  as follows: 
 

    tsintcosAgrmM 0
2

f0M   (9) 
 
Taking into consideration the mathematical 

expressions of the amplitude and phase shift 
done by the relations (7) and (8), the necessary 
motor moment MM  becomes: 

 

 
    tcos21n2t2sinp

n4p2

rmtsinrgmM

222

22222

42
0

0M


















 (10) 

 
The differential mechanical work of the 

motor dW  can be written 
 

 dtMdMdW MM   (11) 
 

and the mechanical work for an entire 
oscillation cycle can be written as follows: 

 

 






2

0
M

2

0
M

2

0
cycle dtMdMdWW  (12) 

 
With the expression (10) of the motor 

moment MM , the mechanical work for a cycle 
becomes after integration as follows: 

 

 
 

  












22222

52
0

cycle
n4pm

nrm2
W  (13) 

 
The average necessary motor moment 

MavgM  and the average power avgP  can be 
calculated as follows: 

 

  

  















22222

52
0cycle

Mavg
n4pm

nrm
2

W
M (14) 

 

  

  












22222

62
0

Mavgavg
n4pm

nrmMP  (15) 

3.2. Model of the mechanical system 
with nonlinear damping 

In order to make a qualitative and 
quantitative analysis of the dynamic parameters 
of the 1DOF mechanical system with nonlinear 
damping [2] [4], we consider differential 
moving eq. from (4), where the nonlinear 
damping coefficient is polynomial type as 
follows: 
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 





1i

i
i0 zbbb   , (16) 

 
where 0b  is the coefficient of linear damping 

and  ,1ibi  are the coefficients of nonlinear 
polynomial damping (dissipations proportional 
to velocity integer exponents). 

For qualitative evaluation of the dynamics 
of the 1DOF system with nonlinear damping, 
we consider, in the first approximation, that the 
steady-state vibration is harmonic with the 
same frequency as the inertial force: 

 
 tcosAz f   (17) 

 
The modulus of the velocity can be written 

as follows 
 

 tsinAz f   , (18) 

 
where the module of sine is periodic and we can 
write it also 

 

 
   
 











k
k2t1k2iftsin

1k2t2k2iftsin
tsin  (19) 

 
Being periodic, the function from (19) can 

be decomposed into a Fourier series as follows: 
 

 ti2cos
1i4

142tsin)t(f
1i 2







 



 (19) 

 
Because the coefficients of the harmonic 

functions rapidly decrease to the i index, we 
consider only the first four terms from the 
Fourier series as follows: 

 

 






 









t6cos
35
1t4cos

15
1t2cos

3
14

2tsin
 (20) 

 
With the approximation (20), the 

expression of the velocity’ modulus becomes 
 

 
t6cosat4cosa

t2cosaaz

64

20f




 (21) 

 
where the coefficients a2i, i=0,1,2,3 are as in 
[3]. 

Taking into consideration only four terms 
for the polynomial damping coefficient 

 

 
3

f3
2
f2f10 zbzbzbbb    , (22) 

 
and the modulus of the velocity done by (21), 
the global damping coefficient can be written as 
follows: 

 

 


 

 
3642

03
2

64

2026

42010

t6cosat4cosat2cosa

abt6cosat4cosa

t2cosaabt6cosa
t4cosat2cosaabbb









 (23) 

 
The square of the modulus of the velocity 

can be written 
 

 



 






6

0i
i2

2
6

420
2
f

ti2cosct6cosa

t4cosat2cosaaz

 (24) 

 
where the coefficients 6,0ic i2   can be 
written function of the coefficients a2i , 
i=0,1,2,3, by identification of the coefficients 
of the trigonometric functions sine and cosine. 

The cube of the modulus of the velocity 
can be written 

 

 



 






9

0i
i2

3
6

420
3
f

ti2cosdt6cosa

t4cosat2cosaaz

 (25) 

 
where the coefficients 9,0id i2   can be 
written function of the coefficients a2i , 
i=0,1,2,3. 

With the expressions (24) and (25) of the 
exponents of the modulus of the velocity, the 
damping coefficient (23) becomes 

 

 



9

0i
i2 ti2coseb  , (26) 

where the coefficients 9,0ie i2   can be 
calculated by a simple identification of the 
coefficients of the trigonometric functions sine 
and cosine. 

The nonlinear resistance force according to 
polynomial damping coefficient (26) becomes 
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 



9

0i
i2R ti2cosetsinAzbF   , (27) 

 

or,   


 
9

0i
1i2R t1i2sinFF  , (28) 

where:   8,1iee
2

AF 2i2i21i2 


   

  021 e2e
2

AF 


     1819 e
2

AF 
  

 
Taking into consideration the nonlinear 

resistance force done by (28), the differential 
moving equation becomes 

 

 tcosrmkzFzm 2
0R   , (29) 

or 
 

tcosrm

kzt1i2sinFzm

2
0

9

0i
1i2



 



   (30) 

 
Since we have considered only four terms 

for the polynomial damping coefficient and four 
terms for the Fourier series of the modulus of 
the velocity, the resistance force done by (28) 
has only ten terms. For an infinite number index 
the resistance force is as follows: 

 

 

 


















1j
j

0i
1i2R

tjsinF

t1i2sinFF

 (31) 

 
Taking into consideration only the first 
1n   (significant) terms of the resistance force, 

the eq. (30) becomes as follows: 
 

 

  t1n2sinFt5sinF
t3sinFtcosrm

kztsinFzm

1n25

3
2

0

1











 (32) 

 
It can be seen that the right side of the eq. 

(32) contains not only the harmonic force with 
the pulsation   (due to the inertial vibratory) 
but also harmonic forces with pulsations 
  n,1i1i2  ; that’s why, we can say that 
the mechanical elastic system with polynomial 
dissipation excited by harmonic forces is self 
excited on the odd index superior harmonic 
frequencies / pulsations. 

4. NONLINEARITY INDEX 
Considering for the 1DOF mechanical 

system with polynomial damping the 
differential equation (32), the forced steady-
state motion is composed from the harmonic 
vibration 

 

     


 
n

0i
1i21i2,f t1i2sinAtz  , (33) 

 
where 1i2,fA   n,0i   are the spectral 
harmonic amplitudes of the steady-state 
vibration and 1i2   n,0i   are the phase 
shifts between the harmonic inertial force and 
the spectral vibration. 

4.1. Nonlinearity index of spectral 
amplitudes 

In order to appreciate the nonlinearity of a 
mechanical system with polyharmonic steady-
state vibrating movement, we can compare the 
amplitude of the vibration on fundamental 
pulsation   with the amplitudes of the 
vibration on superior spectral pulsations 
  n,1i1i2  ; for this comparison we 
introduce the nonlinearity index of amplitude 
defined as follows: 

 

 [%]
A

A
100I

1f

1i2,f
1i2,A


   n,1i   , (34) 

 
where 1i2,AI   n,1i   is the nonlinearity index 
of spectral amplitude of 1i2   order. 

4.2. Nonlinearity index of spectral 
power 

In order to highlight how the power 
influences the degree of nonlinearity of the 
system, we can write the mechanical work of 
the motor for a complete period  /2T  
function of forced steady/state vibration 
amplitude as follows: 

 

 
  










2
0 0

2
f0

2
0 Mcycle

dsincosAgrm

dMW
 (35) 

 
After the calculus of the definite integrale, 

the mechanical work becomes 
 

 0
2

f0cycle sinrAmW   (36) 
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or, taking into consideration the expression (8): 
 

 
 

  22222

3
f0

cycle
n4p

nArm2
W




  (37) 

 
The average power can be obtained as 

follows: 
 

 
 

  22222

4
f0cycle

avg
n4p

nArm
2

W
P









  (38) 

 
For the steady-state vibration of the 

mechanical systems with polynomial damping, 
the average spectral powers can be written 
function of spectral amplitudes 1i2,fA   and 

spectral damping factor 1i2n   as follows 
 

 
B

AP avg1i2   , (39) 

where: 
 

    41i2,f1i20 1i2AnrmA   , n,1i   

      22
1i2

222 1i2n41i2pB    
 

We can compare the spectral powers 
dividing each of them by the fundamental 
pulsation power as follows: 

 

  
D
C1i2

P
P 4

avg1

avg1i2 
 , (40) 

 
where BAnD 1f1  for n,1i  . 

  22
1

222
1i2,f1i2 n4pAnC    

 
If we consider that the vibratory 

technological equipment usually works far off 
resonance, the relation (40) becomes: 

 

   E
An
An

1i2
P

P

1f1

1i2,f1i23
avg1

avg1i2    , (41) 

 

where 
   2

1i2
2

2
1

2

n41i2

n4
E




 , n,1i  . 

 

Considering that the square of the spectral 
pulsations are much bigger than the square of 
the spectral damping factors, the fraction (41) 
becomes more simple: 

 

  
1f1

1i2,f1i22
avg1

avg1i2
An
An

1i2
P

P    n,1i  , (42) 

 
In the case of spectral damping factors with 

close values, we can write: 
 

  
1f

1i2,f2
avg1

avg1i2
A

A
1i2

P
P    n,1i   (43) 

 
The nonlinearity index of spectral power is 

defined as the ratio between the dissipated 
powers as follows: 

 

 [%]
P

P
100I

avg1

avg1i2
1i2,P


   n,1i   (44) 

 
The relations between the two indexes (34) 

and (44) are as follows: 
 

   1i2,A
2

1i2,P I1i2I    n,1i   (47) 

5. CONCLUSIONS 
The nonlinear mechanical elastic system 

with polynomial dissipation excited by 
harmonic forces is self excited on the odd index 
superior harmonic frequencies / pulsations. 

The defined nonlinearity indexes can give a 
quantitative estimate of the size of the 
nonlinearity of the system. These indexes can 
be calculated only after a spectral analysis of 
the mechanical system vibration is done. 
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