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ABSTRACT 
 

The dynamic behavior of the spherical body floating in a liquid, part of a 
ball float valve, is analyzed from the point of view of the dynamic systems 
theory. The study of the motion illustrates the differences between the 
linear and the non-linear approach. The time analysis of a significant 
variable and the phase plane representation were used. Based on the 
obtained solution, the paper deals with the possibility of onset of 
deterministic chaotic motions for special initial conditions and model 
assumptions is discussed. 
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1. DESCRIPTION OF THE 
DYNAMIC SYSTEM ANALYZED 

 
The paper analyzes the dynamics of a ball 

float valve (Fig. 1). The valve is controlled by a 
spherical body floating in a liquid, which can 
close or open the hole of a 
tube, according to the free 
surface level. However, the 
considerations apply also to 
other devices with floating 
bodies, such as: sea planes, 
water level indicators (which 
produce warning whistles 
when reaching the hydrostatic 
level in boreholes or wells), 
the main parts of buoys,  
floating body attached to 
fishing nets, various devices 
used to feed pets, etc. 

2. MODEL  
 
The studied system is represented as a 

homogeneous spherical body (of radius R  and 
density  ), that is floating in a liquid (of 
density L ), such that the equilibrium position 
is reached when the center of the sphere is at 

the liquid free level (Fig. 2). If a perturbation is  
applied in vertical direction, the immersed 
portion of the sphere is measured by variable 
 ty .  The perturbation acting on the body can 

be harmonic. 
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Fig. 2. Mechanical model 

By applying the theorem of variation of the 
linear momentum [2], the equation of motion in 
vertical direction is obtained, 

   PL Fgymym  , (1) 

where the following notations have been used: 
3

3
4 Rm   - mass of the sphere; 

  3
3
20 Rm LL   - liquid mass dislocated in 

 

 
Fig. 1. Ball 
float valve 
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the equilibrium position; 

    222 23
3
1 RyyRym LL   - total 

liquid mass dislocated in the displaced 
position; 

   yyRym LL
223

3
1

  - supplementary 

liquid mass dislocated in the displaced 
position; 

tFFP  cos0  is the perturbation force. 
The equilibrium condition  

  gmmg L 0  (2) 

leads to:  

  2L . (3) 

Therefore, the differential equation of 
motion can be rewritten as: 

 tFy
R
y

R
gy 


















 cos3

2 0
2

 . (4) 

This equation will be further analyzed, both 
in linearized and non-linearized form. 

2.1. Linear analysis of the motion 
 

Retaining only the linear terms in (4), the 
equation of a forced undamped vibration is 
obtained [2], [4], 

 tyy  cos , (5) 

where 
R
g

2
3

 ,  
m
F0 . 

Diagrams in Figure 3 illustrate the 
characteristics of such a motion.  
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Fig. 3. Characteristics of the linear motion 

In the phase plane (Fig. 4), each moment of 

the motion is represented by a point of 
coordinates  ty  and  ty ,  which provides more 
information regarding the system state than the 
time-history analysis of the variable  ty , since 
the velocity is also indicated. Using the same 

system parameters ( 2s1  , 2m/s4.0 , 
1s55.0  ), but a different integration time 

( s100t ,  s200t  and s500t , 
respectively), the closed curves presented in the 
figure, specific to periodic motions, have been 
obtained [1]. 
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a)  s100t  
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b) s200t  
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c) s500t  

Fig. 4. Linear analysis 
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2.2. Non-linear analysis of the motion 
The non-linear differential equation (4), 

rewritten as, 

 tFy
R

gy
R
gy  cos

22
3

0
3

3
 , (6) 

describes a non-linear undamped forced 
vibration.  
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a)  s100t  
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b) s200t  
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c) s500t  

Fig. 5. Undamped system - non-linear analysis 

The second-order di fferential equation (6) 
can be transformed into an equivalent system of 

first-order differential equations, 

 
















,

cos3
112

21







yyy

yy

 (7) 

where 
R
g

2
3

 , 32R

g
 , 

m
F0 . 

The differential equation system (7) has 
been integrated numerically. The phase plane 
analysis is considered more suitable to illustrate 
the dynamic behavior of the modeled system. 
The same values were chosen for the 

coefficients of the linear terms ( 2s1  , 
2m/s4.0 ,  1s55.0  ) and for the 

integration times, while for the non-liner term, 

value 22sm53.34    has been used. 
Diagrams in Figure 5 have been obtained. 

For the chosen numerical values, the 
presence of a regular motion can be observed, 
even if the non-linear characteristic have been 
taken into account. The shape of the trajectory 
in the phase plane is close to an ellipse and it 
approaches a limit cycle. 

2.3. Non-linear analysis of the damped 
motion 

If viscous damping effects are taken into 
consideration, the motion of the body immersed 
in liquid is described by the differential 
equation system [3] 
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yyyy

yy

 (8) 

where   is the viscous damping coefficient, 
while all other coefficients have the same 
meaning as in the previously studied cases. 

For consistency, the phase plane analysis is 
used again and the system of differential 
equations has been integrated with the same 
coefficients and using the same computer 
program, by choosing the same integration 

times as before. The value 2s1.0   has been 
chosen for the damping coefficient. Diagrams in 
Figure 6 have been obtained. 

The obtained numerical results indicate that 
the motion is close to a harmonic oscillation, 
since the image in the phase plane is a closed 
curve, similar in shape to an ellipse. Increased 
integration time has led to a solution of the 
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same type, in the sense that the result is still a 
closed curve, even if relatively more 
complicated, and the width of the curve is no 
longer infinitely small but it occupies a finite 
region in the phase plane. Such observations 
have led to the conclusion that the dynamic 
system is in the first two phases of evolution 
towards chaos (the beginning phase and the 
strong beginning phase) [3], that has prompted 
to increase the integration time just as in the 
previous two cases studied. 
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a)  s100t  

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-3

-2

-1

0

1

2

3

y(t)

dy
/d

t

 
b) s200t  
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c) s500t  

Fig. 6. Damped system - non-linear analysis 

Diagrams such as the one in Figure 7 have 
confirmed the observations regarding the 
stability of the motion, as a strong diffusion of 
trajectories in the phase plane with a relatively 
complex pattern can be seen. In the same plot, 
the attractor pools and the character of strange 
attractor (typical to a set of att ractors with 
fractal character located in a finite domain) can 
be noticed. The dynamic system has reached the 
mature chaos phase of its evolution [3]. 
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Fig. 7. Damped system - non-linear analysis for 

-1s74.1 ,  s2000t  

By changing the eigenfrequency   of the 
perturbation force in equation system (8) and by 
changing the integration time, the results in 
Figure 8 have been obtained. 

The system dynamics study is extended by 
varying the eigenfrequency of the perturbation 

in system (8), in the range -1s 15.0 , 
-1s 2.0 , -1s 3.0 ,  -1s4.0 , with a 

constant integration time ( s 75t ). The 
corresponding phase plane diagrams are shown 
in Figure 9. 

3. CONCLUSIONS 
The paper studies the behavior of a 

dynamic system whose equation of motion is 
described by a nonlinear differential equation. 
The dynamics of the system is analyzed for the 
case of the linearized equation of motion and 
for the non-linear case, with and without 
viscous damping effects [1].  

The study is developed for identical initial 
conditions and the effects of changing the 
integration time and the eigenfrequency of the 
perturbation force are analyzed, respectively.  

Fig. 6
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Portretul in planul fazelor t=50 s

 
a)  s50t  

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

y(t)

dy
/d

t

 
b)  s100t  

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

y(t)

dy
/d

t

 
c) s200t  
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Portretul in planul fazelor t=2000 s

 
d) s2000t  

Fig. 8. Non-linear analysis - influence of the 
integration time 
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a) -1s 15.0  
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b) -1s 2.0  
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c) -1s 3.0  
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d) -1s 4.0  

Fig. 9. Non-linear analysis - influence of   
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Results of numerical integration in each 
case are illustrating the evolution of the system. 
Under certain conditions and for certain values 
of the coefficients in the differential equation 
of motion, various phases of deterministic 
chaos can be identified, in accordance with 
published definitions. Of the same importance 
is the observation that, from a qualitative point 
of view, deterministic chaotic motions occur 
when certain essential characteristic conditions 
are met: non-repeating behavior, great 
sensitivity to initial conditions, non-linear 
system of differential equation describing the 
motion and containing at least three 
independent variables, attractor of the motion 
with characteristics of a fractal. 

It can be concluded that the linearized 

analysis of a dynamic system is relevant only as 
a first order approximation, while a more 
refined investigation requires a non-linear 
approach, since, even such simple systems may 
exhibit unpredictable evolutions for certain 
values of the definition parameters and for 
certain initial conditions. 
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