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ABSTRACT 
 

The paper proposes an approach of a 3DOF (3 Degree Of Freedom) 
dynamic model for the vibrating conveyors, with the purpose of 
determining the trajectories of the points which belong to the organ to 
work (transport, sort out, dose, a.s.o.). This is necessary for the designing 
work, because it can establish some impartial criteria for the appreciation 
of dynamic characteristics of the equipment. 
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1. INTRODUCTION 
The vibrating equipment with a lot of 

usefulness to the transport and the sort of 
materials (stuffs, raw products) gross weight or 
by the piece, are characterized through 
constructive simplicity,  reduced consumption of 
energy and precision in the technological 
processes (transport, dose, sort out). 

Both in the designing phase and in the 
exploitation phase, the following performance 
criteria have to be imposed: 

-controlled technological vibration regime; 
-specific efficiency of the process; 
-minimum consumption of energy; 
-ordered and progressive transportation. 
Figure 1 shows the constructive scheme 

and the operation scheme for an inertial 
vibratory conveyor. The conveyor can be driven 
also through another kind of vibrators 
(cinematic, electromagnetic, hydraulic, 
pneumatic). The parts of the conveyor in fig. 1 
are the following: 

1- the organ to work (eaves); 
2- the inertial vibrator; 
3- the two directions bearing elements 

(elastic and viscous damping); 
4- the eccentric masses. 
In general there are one, two, four or many 

masses in the inertial vibrators. The most useful 
solution is the vibrator with two eccentric 
masses, the same as in fig. 1; this solution is 

simply and it ensures a harmonical force after 
one direction prescription (the vibrator’s axis). 

In almost all experiences the organ to work 
is considered with the mass concentrating in the 
center of the mass and all forces (inertial, 
elastic, disturb) are passing through this point.  
 

 
 

Fig. 1. Constructive scheme for an inertial 
vibrating conveyor 

 
If we add at these hypotheses the 

consideration that the system is studied only in 
the longitude plane of the organ to work, it will 
result a lot of analytic relations which are 
simple and easy to use, but these relations do 
not explain any phenomena which can appear, 
the worst being the agglomeration of the 
material in some zones of the sieve’s eaves or 
the conveyer’s pipe. 

2. PHYSICAL AND 
MATHEMATICAL MODELS 

In this study we consider the organ to work 
like a solid body with viscous elastic bearings. 
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The elastic forces, viscous forces and disturb 
forces do not cross through the center mass. 

The hypotheses of motion are keeping in 
the longitude plane of the organ to work (which 
is considered plane of symmetry) and we can 
say that the solid body has a parallel-plane 
motion. 

In this case, the model for calculation of 
the vibrating equipment is shown in fig. 2. 
 

 
 

Fig. 2. Simplified calculus model of the 
vibrating conveyor 

 
We consider that the solid body (the organ 

to work) has the m mass and the inertial 
moment Jo on a perpendicular axis on the 
longitude plane in point C=O. We also know 
the geometrical dimensions l0, l1, l2, the elastic 
constants k1, k2, k’, k’ ’ and the damping 
coefficients b1, b2, b’, b”. 

If we consider the horizontal position of 
the solid body as the static equilibrium 
position, the motions of the solid body can be 
considered the same as in fig. 2 b). 

We used following hypotheses: 
-the horizontal displacements and velocities of 
all points of the solid body are the same; 
-the solid body oscillates in the longitude plane 
with small angles.  

The inertial vibrator has one direction 
disturb force under an angle by horizontal 
line. 

 The harmonical disturb force has the 
expression 
 
   tsinHtF  , (1) 
 
where 

2
0emH   is the amplitude of the force; 

0m - total unbalanced mass; 
e  - the eccentricity of unbalanced mass; 
  - the angular speed of unbalanced 

masses. 
The generalized coordinates which show 

the position of the solid body by the static 
equilibrium position are x, y,   x and y are the 
displacements of the center of gravity and  is 
the rotation angle in the longitude plane. 

The deformations of the linear viscous-
elastic bearings are: 

-for B point: x and y1; 
-for D point: x and y2.  
If we consider the hypothesis of a small 

rotation angle, the relations between 
displacements and deformations are the 
following: 
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The motion equations are determined from 

the second species of Lagrange equations: 
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where: 

E is the kinetic energy of the system; 
V - the potential energy according to the 

elastic deformations of the bearings; 
QiR - the generalized forces according to 

viscous forces; 
QiF - the generalized forces according to 

disturb forces. 
The kinetic energy of the system is: 
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The potential energy is: 
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where ``k`kk  . 

The generalized disturb forces are: 
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where: 
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Taking into consideration the relations (2) 
and/or (3) between displacements and 
deformations, we can write the kinetic energy 
 

2

2
.

222
.

1
.

12

2

1
.

11

2.
ym

2
1yymym

2
1xm

2
1E  (8) 

 
where we used the notations: 

 
 221

o
2
2

11
ll

Jml
m




  

 
 221

o21
12

ll
Jlmlm




  

 
 221

o
2
1

22
ll

Jml
m




  

 
The viscous forces are proportional to the 

velocities of the points B and D 
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Using the second species of the Lagrange’s 

equations, we obtain the motion equations: 
 
 tsin*hxkxbxm x    (10a) 
 
 tsinhykybymym 11111212111    (10b) 
 
 tsinhykybymym 22222222112    (10c) 
 

3. DINAMIC PARAMETERS 
For the vibrating technological equipment 

it is very important to establish the calculation 
relations between the vibration parameters and 
the trajectories of each point of the organ to 
work. Thus, in order to establish the correlation 
between dynamic parameters and technological 
parameters of the vibrating conveyor, the 
trajectory of different points of the organ to 
work can give concrete information on the 
quality of the technological process. 

The equation (10a) is independent of the 
other two motion equations and can be written 
as follows 
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x   , (11) 

 
where: 
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The forced vibration is described by the 

particular solution of the equation (11) and it is 
as follows: 

 
   tsinAx  , (13) 

 
where A  is the amplitude of the forced 

vibration of the system on the x direction and 
  is the angle between the disturb force and 
the displacement on the x direction. 

Through the identification in the equation 
(11), we obtain the calculus relations for A  and 
  as follows: 
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The differential equations (10b) and (10b) 

are dynamically (inertially) coupled, with 
particular solutions such as: 

 

 2,1itsinCtcosCy i2i1i   , (15) 

 
or 
 

   2,1itsinAy iii  , (16) 

 
where: 
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The velocities and accelerations are: 
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If we introduce in the system (10) the 

relations (15), (18) and (19), we can obtain the 
algebraic linear system as follows: 
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 The system (20) has the unknown 

quantity 2,1j,iCij  . The matrix form of the 
system is 

 
 hcK   , (21) 

 
where the square matrix K  and the vectors c  

and h  are as follow: 
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The solution of the system (20) is: 
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Using the relations (22), the amplitudes and 
the phases of the vertical coupled vibrations of 
the bearings B and D are 
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where we used the following notations: 

 

 
  21

2
21122211

42
122211

kkbbkmkm

mmmL




 

 

    1221
3

112221 kbkbmbmbM  
 

  2
122

2
22211 mhmkhU   

 

  2
121

2
11112 mhmkhU   

 

 122211 bhP;bhP  
 

4. TRAJECTORIES OF THE POINTS 
OF THE SOLID BODY 

All the points of the organ to work oscillate 
harmonically on directions x and y.  In order to 
determine the trajectories of the points of the 
rigid body, we consider the vertical vibration of 
the G point, which is situated at a distance z 
from the center of gravity C, as in fig. 3.  
 

 
 

Fig. 3. Calculus model for the trajectories of 
the points of the conveyor eaves 

 
From the comparison of the triangles, we 

can write the calculus relation of the vertical 
displacement of point G as follows: 
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The trajectories of all points of the organ to 

work will result compounding the hortogonale 
vibrations done by the relations (13) and (24). 

Replacing the displacements 1y  and 1y  
done by relations (15) or (16) into the relation 
(24), the vertical vibration of the point G is 
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and after the calculation 

 
  GGG tsinAY   , (26) 

 
where the amplitude and the phase are done by 
the following relations: 
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The coordinates of the point G can be 

written  
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Eliminating the variable t  from (29) and 

(30), it results the equation of a conic as 
follows: 

 

   G
2

G
G2

G

2

2

2
sincos

AA
xy2

A
y

A
x

 (31) 

 
The conic discriminant is 
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If  ZkkG  , then 0  and 

the conic is an ellipse with center in static 
equilibrium position of the G point and with x 
and yG axes. The ellipse enters a rectangle 
which has sizes A2  and GA2 .  

If  ZkkG  , then the ellipse 
degenerates into a straight line and the 
vibration of all points of the solid body are 
rectilinear. The inclination of the rectilinear 
vibration is function of the amplitudes of 
horizontal and vertical vibration and the phase 
shift as follows: 
a) if  k2G ,  then the straight line 
equation is 
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b) if   1k2G , then the straight line 
equation is 
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The straight line passes through static 

equilibrium position of G point and it makes 
with Gx axes the following angle: 
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If we make a rotation of the coordinate axis 

with G  angle, the coordinates of every point 
of the rigid body are as follows 
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where: (X,Y) are the coordinates of the point G 
in the rotated system with G  angle. 

Using the linear transformation done by the 
relation (36) into the equation (31) of the conic, 
then the equation of the ellipse in the GXY 
system must be like the following conic form: 
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The XY coefficient must be zero, thus: 
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 From there it results the G  angle as 

follows: 
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The sizes of the semi axes of the ellipses 

depend on the position of the point on the solid 
body and are done by the following relations: 
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Therefore, depending on the parameters  , 

G , A  and GA , we conclude that the 
trajectory of the point G can be an ellipse, a 
circle or a straight line. 

The relations which were determined can 
be used for any point of the organ to work. 

5. CONCLUSIONS 
 The dynamic model for inertial 

vibrating conveyor presented in this study 
solved the following problems: 

-the scheme for dynamic calculus; 
-the influences of structural characteristics 

on the dynamic parameters of the vibrating 
conveyors; 

-the equations of the trajectories of all 
points of the eaves of the vibrating conveyor in 
order to characterize pertinently the quality of 
the technological process (transportation, 
dosing, sort out). 

With the established relations in this study, 
we can do the examination of the inertial 
vibrating conveyors or/and feeders in order to 
give some objective criteria of the performance 
level of this type of equipment. 
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