
THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI 
FASCICLE XIV MECHANICHAL ENGINEERING, ISSN 1224-5615 

2012 

35 

THE DYNAMIC ANALYSIS OF THE 
INERTIAL VIBRATING SCREENS 

MODELED AS 3DOF ELASTIC SYSTEMS 
 

Assoc. Prof. Dr. Eng. Nicusor DRAGAN 
MECMET - The Research Center of Machines, 

Mechanic and Technological Equipments 
"Dunarea de Jos" University of Galati 

 

 

ABSTRACT 
 

The paper proposes an approach of a 3DOF (3 Degree Of Freedom) 
dynamic model for the vibrating screens, with the purpose of determining 
some impartial criteria for the appreciation of dynamic characteristics of 
the equipment. The level of specific performances of the screens is based 
on technological parameters of the inertial vibrating screen (frequency, 
disturbing force, amplitude of the screen vibration) and on the degree of 
uniformity of the transmission of vibration across the screen surfaces. The 
quality of the screening operation is much better if the vibrations are 
transmitted uniformly over the entire screen surface. This is why the 
translation vibrations must be predominant rotation vibrations, in the case 
of rotating inertial force. These technological requirements can be 
achieved after the dynamic analysis of the equipment sets up the 
corresponding correlation of the structural and functional parameters. 
KEYWORDS: vibrating screen, 3DOF, elastic system, dynamics 

 

1. INTRODUCTION 
The inertial vibrating screens are the most 

used type of technological equipment for the 
sorting out of the construction materials 
(gravel, sand, crushed aggregate, limestone, 
a.s.o.). 
 

 
 

Fig. 1. Constructive scheme for the inertial 
vibrating screen with 5m2 sieves 

 
The dynamic study and the experimental 

determinations have been carried out for two 
types of inertial vibrating screens, having the 
screen area of 5m2, respectively 12m2, and the 
two different bearing systems: one of them with 
helicoidal steel springs and the other one with 
neoprene supports. The constructive solution of 
the two screens is shown in fig. 1 and fig. 2, 
where all overall and mounting dimensions are 
in mm. 

Figure 1 shows the vibrating screen with 
four metallic sieves of 5m2. The main parts of 
the equipment are: 

1- mainframe (welded structure); 
2- sieves (cutted steel plates or knitted 
steel wires); 
3- inertial vibrator (with two unbalanced 
masses); 
4- belt drive; 
5- electric motor; 
6- helicoidal steel springs;  
7- baseframe (welded structure). 

Figure 2 shows the vibrating screen with 
four metallic sieves of 12m2, where the 
notations are as follows: 
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1- mainframe (welded structure); 
2- neoprene supports; 
3- baseframe (welded structure); 
C- the center of gravity of the mobile 
part of the screen; 
O- the center of the rotational inertial 
force. 

 

 
 

Fig. 2. Constructive scheme for the inertial 
vibrating screen with 12m2 sieves 

 

2. PHYSICAL MODEL 
The simplified calculus model of the 

inertial vibrating screen is shown in fig. 3. The 
main hypotheses of this simplified model are as 
follows: 

- the mobile part of the vibrating screen is 
considered as a solid body with two planes of 
symmetry (vertical planes XCZ and YCZ); 

- the bearings of the screen are identical 
and the elastic characteristics are done by the 
stiffness coefficients xk ,  yk  and zk ; 

-the perturbation rotational force is acting 
in the vertical plane YCZ; its amplitude is 0F  
and the action center is O, defined by the 
coordinates  00 z,y ; 
 

 
 

Fig. 3. Constructive scheme for the inertial 
vibrating screen with 12m2 sieves 

 

3. MATHEMATICAL MODEL 
If we consider the 6DOF model of solid 

body, the generalized coordinates are the 
natural displacements  zyx ,,,z,y,x  , 
where: 

 x - side slip motion 
 y - advance motion 
 z - lift up motion 
 x - pitching rotation 
 y - rolling rotation  

 z - swing rotation 
The corresponding generalized forces are 

as follows: 
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In order to establish the mathematical 

model of the solid body with elastic bearings, 
we consider as known: 
- the dimensional and inertial characteristics 
(mass, central and principal inertia); 
- the stiffness coefficients of the bearings; 
- the disturbing force characteristics. 

Considering only the elastic characteristics 
of the bearings, the non disturbing moving 
equations of the mechanical system are 2nd 
order di fferential linear equations decoupled 
into four subsystems as follows: 

a) side slip motion and rolling rotation  
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b) advance motion and pitching rotation 
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c) the lift up motion 
 

 0zk4zm z   (4) 
 
d) the swing rotation 
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The pulsations of the uncoupled motions 
for each “direction” are: 
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The natural pulsations of the coupled 

motions of the four uncoupled subsystems are 
done by the following calculus relations: 

a) side slip motion and rolling rotation 
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b) advance motion and pitching rotation  
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c) the lift up motion 
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d) the swing rotation 
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The coupling coefficients from the 
relations (7)÷(10) can be calculated with the 
next math formulas: 
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As the motion equations are decoupled and 

the generalized forces are acting on three 
"directions" only,  the differential motion 
equations of the forced vibration can be written 
as follows: 
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where we used the notations: 

 2
0

2
0 zyl   - the distance between the 

gravity center G and the perturbation center O; 

 
0
0

y
zarctan  - the phase shift of the 

perturbation force F. 

4. AMPLITUDES OF THE FORCED 
VIBRATION 

The particular solution of the 
inhomogeneous system (17) describes the 
forced vibration of the solid body. The 
amplitudes of the forced vibration are as 
follows: 
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where we used the following notations: 
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Figure 4 and fig. 5 show the amplitude 

characteristics for the screen with 5m2 sieves. 
Figure 6 and fig. 7 show the amplitude 
characteristics for the screen with 12m2 sieves. 
 

 
 

Fig. 4. The variation of the amplitude of the 
forced vibration on direction Y 

(inertial vibrating screen with 5m2 sieves) 
 
 
 

 
 

Fig. 5. The variation of the amplitude of the 
pitching rotation forced vibration x  

(inertial vibrating screen with 5m2 sieves) 
 
 

 
 

Fig. 6. The variation of the amplitude of the 
forced vibration on direction Y 

(inertial vibrating screen with 12m2 sieves) 
 
 
 

 
 

Fig. 7. The variation of the amplitude of the 
pitching rotation forced vibration x 

(inertial vibrating screen with 12m2 sieves) 

5. CONCLUSIONS 
The dynamic analysis of the linear models 

of the vibrating screens and the plotted 
diagrams of the forced vibration amplitudes 
lead to the following conclusions: 
a) the optimal technological operating condition 
is the post resonance vibrating regime for 

 p63  , where  zx p,p,pmaxp y ); 

b) the translation vibration becomes more 
important than the rotational vibration when the 
center of mass C coincides with the center of 
perturbation force O.  
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