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ABSTRACT 
 

This paper proposes an approach of a finite DOF dynamic model for the 
rigid-solid with multiple neoprene apparatus bearings modeled as viscous 
elastic dampers. After a short presentation of the physical model of the 
solid rigid with multiple bearings, the correspondent linear mathematical 
model in generalized coordinates is determined. The decoupled differential 
equations of motion are obtained by using linear modal transformation 
q=V-1  considering that all the dissipations are linear (structural 
damping). The article presents the virtual instrument developed on the 
basis of LabView® ver. 8.5 from National Instruments, which was used for 
the modal analysis in site of a Romanian highway bridge and for the 
identification of modal damping ratio of the neoprene bearing system. 
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1. INTRODUCTION 
In order to create the mathematical model 

of the finite DOF mechanical system, we use 
the physical model of the rigid solid with six 

degrees of freedom (6DOF) with a finite 
number of viscous-elastic bearings [1], [2], [3], 
[4]. Figure 1 presents the model of the rigid 
solid with n triorthogonal elastic bearings and 
m triorthogonal viscous bearings. 
 

 
 

Figure 1 Physical model of the 6DOF solid rigid with multiple elastic and viscous bearings 
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According to [5], [6], [7], [8] and [9], the 
differential equations of the free movements of 
the rigid solid with viscous-elastic bearings are 
coupled by stiffness and damping coefficients. 
The system of the equations can be written as 
follows: 
 
 0qCqBqA    , (1) 

 
where A  is the inertia matrix; 

B  is the viscous damping matrix 
(damping coefficients); 

C  is the elasticity matrix (stiffness 
coefficients); 

q / q / q  are generalized displacements 

/ velocities / accelerations vectors; 
0  is the null vector. 

2. MODAL DAMPING FOR THE 
nDOF MECHANICAL SYSTEMS 

We consider the general case of a finite 
DOF mechanical system with elastic and 
viscous damping bearings. For reasons of 
generalization of the problem, we consider that 
the system has nDOF. In this case, the 
differential equations of the free movements 
vibration of the mechanical system are acc. to 
(1), where A , B  and C  are nn  quadratic 
matrices and q , q , q  and 0  are column 

vectors with n  components. 
The modal analysis of the nDOF 

mechanical system leads to the natural 
pulsations n,1ipi   and eigenvectors 

n,1ivi  , which verify the matrix equation 

 

 n,1ivpvD i
2
ii   , (2) 

 

where CAD 1  is the dynamic matrix of the 
system. 

We consider the linear modal 
transformation of the eq. (1) 
 
 0VCVBVA    , (3) 

 

where: qV 1  is the modal vector 

(containing the modal coordinates n,1ii  ) 
 ni21 vvvvV   is the 

modal matrix. 
 Considering the transposed modal matrix 
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we can left side matrix multiply all eq. (3) as 
follows: 
 

 0VCVBVAV     , (5) 

 
After matrix multiplication, we get the 

modal differential equation as follows 
 

 0KVBVM     , (6) 

 
where M  is the modal matrix of inertia and K  
is the modal matrix of elasticity. 
 The above modal matrices are both 
diagonal 
 

  ni21 a,,a,,a,aDIAGVAVM    (7) 
 

  ni21 c,,c,,c,cDIAGVCVK    , (8) 
 
where ia  are the modal coefficients of inertia 
and ic  are the modal coefficients of elasticity 
with the calculus relations as follows: 
 

 n,1ivAva iii    (9) 

 

 n,1ivCvc iii    (10) 

 
Considering structural damping for all 

bearings, the dissipation coefficients are 
proportional with the elasticity coefficients 
 
 n,1j,ikcb ijij   , (11) 
 
where k  is the proportionality factor between 
damping and stiffness. 
 In this case, the second matrix product 
from eq. (6) becomes 
 

 HKkVCVkVBV    , (12) 
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where H  is the diagonal modal damping matrix 
 
  ni21 h,,h,,h,hDIAGH   , (13) 
 
and ih  are the modal damping coefficients: 
 

 n,1ivBvh iii    (14) 

 
With the diagonal modal damping matrix 

H , the differential equations in modal 
coordinates become 
 
 0KHM    (15) 

 
and, as all matrix from (15) are diagonal, the 
system of differential equations are decoupled 
into n  independent equations as follows: 
 
 n,1i0cha iiiii    (16) 
 
 Dividing the eq. (16) by the modal 
coefficient of inertia n,1iai  , it can be write 

function of the modal damping ratio n,1ii   

and the undamped natural pulsation n,1ipi   
 

 n,1i0pp2 2
iiiii    (17) 

 
where: 
 

 n,1i
ca2

h

ii

i
i   (18) 

and 

 n,1i
a
cp

i
i

i   (19) 

 
The modal damping ratio i  can be 

calculate from the plot of the time domain 
vibration signal for the displacement of an 
underdamped mechanical elastic system through 
the logarithmic decrement i  as follows 
 

 n,1i
4 2

i
2

i
i 




  (20) 

 

 n,1i
A

A
ln

N
1

Nj

j
i 


 (21) 

 
where jA  is the displacement amplitude of a 

peak at a reference time t  and NjA   is the 

displacement amplitude of a peak N  periods 
away. 
 Taking into consideration that the 
frequency of the under damped vibration of the 
1DOF mechanical system is smaller than the 
frequency vibration of the same system but 
without damping, we can calculate the 
undamped natural frequency as follows 
 

 
2

ud
n

1

ff


  , (21) 

 
where udf  is the frequency of the underdamped 
system vibration and   is the damping ratio of 
the system. 

3. CASE STUDY. MODAL DAMPING 
RATIO CALCULATION FOR A 

VIADUCT USING VIRTUAL 
INSTRUMENTATION TECHNIQUE 

In order to analyze the dynamic parameters 
of vibration, there were designed and built two 
virtual tools: 
-one for acquiring and saving acceleration 
values taken during experiments; 
-second to analyze the acceleration parameters. 

The acquisition of vibration analog signals 
is made by acceleration transducers 
(accelerometers). The analog signals are 
transmitted to DAQ, which may be 
inside(internal) or outside (external) of the PC. 
The DAQ performs a signal conditioning and 
conversion in the digital format. Digital values 
are transmitted directly or through a cable into 
a USB port on the PC which is running the 
signals’ acquisition program. The acquisition 
program has some features which provides the 
opportunity for memorizing information about 
the measurement conditions. 

The virtual instrument developed on the 
basis of LabView® ver. 8.5 was used to perform 
the dynamic tests in site on the viaduct situated 
on km 29+602,75 - km 29+801,25 on the A3 
Romanian highway. Dynamic actions were 
generated by a running four axle 41 ton truck 
over standardized height h = 4 cm obstacles on 
the road at different standardized speeds 
(10km/h to 50 km/h). The experimental data 
were obtained on three channels (accelerations 
on the axis x, y and z) by a fourth channel DAQ 
from National Instrument (NI 9233) through the 
USB port of a PC workstation.  The used 
transducer was a triaxial accelerometer 
Bruel&Kjaer type 003 4506 B series 10145, 
fixed in the middle sectional plane of the 
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viaduct; the axis of the transducer are oriented 
as follows: x axis - parallel with the 
longitudinal axis; y axis - horizontal transverse 
axis; z axis - parallel with the vertical axis. 
 Figure 2 shows a partial view of the frontal 
panel of the virtual instrument used for time 
domain and frequency domain analysis of the 
vibration signals on three direction. The 
displacement signals were obtained by digital 
integration of the acceleration signals obtained 
from the triaxial accelerometer B&K. 

Figures 3, 4 and 5 show the time and 
frequency domain representations of the 
unfiltered displacement signals of the 

longitudinal, lateral and vertical vibration.  
In order to calculate the damping ratio for 

natural modes of vibration, we have to get the 
time domain representation of the under 
damped vibration, separately for each 
eigenfrequency. Because the time domain 
representation of the displacements of the 
viaduct results as a linear summation of the 
eigenvectors, it’s necessary a signal filtering 
for each eigenfrequency domain. The signal 
filtering is made by the Virtual Instrument 
which has a dedicated internal module, with 
different types of filtration bandwidth and 
algorithm type. 

 
 

Figure 2 Frontal panel of the Virtual Instrument for v=30km/h, h=4mm, with traction 
(displacement signal on three channels – time and FFT representation) 

   
a) time domain [s] representation     b) frequency domain [Hz] representation 

 
Figure 3 Longitudinal displacement [mm] representation 
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a) time domain [s] representation     b) frequency domain [Hz] representation 

 
Figure 4 Lateral displacement [mm] representation 

 
 
 

   
a) time domain [s] representation     b) frequency domain [Hz] representation 

 
Figure 5 Vertical displacement [mm] representation 

 
 
 
 

 
 

Figure 6 Frontal panel of the Virtual Instrument for v=30km/h, h=4mm, with traction 
(filtered signals, Bessel filter, 16-17 Hz bandpass filter type) 
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Figure 6 shows the frontal panel of the 
Virtual Instrument analyzer (partial view) for 
the free under damped vibration of the viaduct 
with the with following settings: 
-dynamic excitation: v=30km/h, h=4mm; 
-displacements obtained through double 
integration of the accelerations signals (with 
1Hz high pass cutoff frequency); 
-time duration of FFT analysis: 10 sec.;  
-filtering method: 16-17 Hz bandwidth pass 
Bessel filter type. 

Figure 7 shows the displacements 
representation (time and frequency domain 
representations) of the viaduct lateral vibration. 
With the highlighted values on the on the time 
domain representation, we can calculate the 
logarithmic decrement  , the damping ratio   
and the eigenfrequency nf  for the under 
damped free vibration with the frequency 

Hz58.16fud   as follows: 

 

 079.0
000305.0
001482.0ln

20
1   

 

 0126.0
079.04

079.0
22



  

 

 Hz581.16
0126.01

58.16f
2n 


  

 

4. CONCLUSIONS 
The steps to determine the modal damping 

by Virtual Instrumentation are:  
-FFT analysis of the vibration signal (→natural 
frequencies); 
-bandwidth pass filtering the signal (→modal 
vibration); 
-logarithmic decrement  , damping ratio   and 
eigenfrequency nf  calculation. 
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a) time domain [s] representation     b) frequency domain [Hz] representation 

 
Figure 7 Lateral displacement [mm] representation (12-13 Hz bandwidth pass Bessel filter type) 

A j=0.001482mm 
t j=4.106s 

Aj+20=0.000305mm 
tj+20=5.425s 

f=16.58Hz 


