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ABSTRACT

This paper proposes an approach of a finite DOF dynamic model for the
rigid-solid with multiple neoprene apparatus bearings modeled as viscous
elastic dampers. After a short presentation of the physical model of the
solid rigid with multiple bearings, the correspondent linear mathematical
model in generalized coordinates is determined. The decoupled differential
equations of motion are obtained by using linear modal transformation
g=V'n considering that all the dissipations are linear (structural
damping). The article presents the virtual instrument developed on the
basis of LabView® ver. 8.5 from National Instruments, which was used for
the modal analysis in site of a Romanian highway bridge and for the
identification of modal damping ratio of the neoprene bearing system.

KEYWORDS: modal coordinates, modal damping, virtual instrumentation,
FFT analysis, eigenvalues, natural frequencies

degrees of freedom (6DOF) with a finite

1. INTRODUCTION number of viscous-elastic bearings [1], [2], [3].

In order to create the mathematical model ~ [4]. Figure 1 presents the model of the rigid

of the finite DOF mechanical system, we use solid with n triorthogonal elastic bearings and
the physical model of the rigid solid with six M triorthogonal viscous bearings.

Figure 1 Physical model of the 6DOF solid rigid with multiple elastic and viscous bearings
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According to [5], [6], [7], [8] and [9], the
differential equations of the free movements of
the rigid solid with viscous-elastic bearings are
coupled by stiffness and damping coefficients.
The system of the equations can be written as
follows:

1)

(!

+CQg=

where A is the inertia matrix;

B is the viscous damping matrix
(damping coefficients);

C is the elasticity matrix (stiffness
coefficients);

g/q/¢ are generalized displacements

/ velocities / accelerations vectors;
0 is the null vector.

2. MODAL DAMPING FOR THE

nDOF MECHANICAL SYSTEMS

We consider the general case of a finite
DOF mechanical system with elastic and
viscous damping bearings. For reasons of
generalization of the problem, we consider that
the system has nDOF. In this case, the
differential equations of the free movements
vibration of the mechanical system are acc. to

(1), where A, B and C are nxn quadratic
matrices and ¢, ¢, g and Q0 are column

vectors with n components.

The modal analysis of the nDOF
mechanical system leads to the natural
pulsations pj i=1n and  eigenvectors
V. i :1,_n, which verify the matrix equation

=i
(2)

Dy, =pfy; i=1n,

where Q:A‘lg is the dynamic matrix of the

system.
We consider the linear modal
transformation of the eq. (1)
AVN+BVN+CVn=0, (3)
where: n:\i_lq is the modal vector
(containing the modal coordinates n; i :m)
V=l vy oy oy ] s the

modal matrix.
Considering the transposed modal matrix
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we can left side matrix multiply all eq. (3) as
follows:

xV T AVH+BVA+CVn=0, (5

After matrix multiplication, we get the
modal differential equation as follows

0,

Mii+V T BVA+Kn= (6)

where M is the modal matrix of inertia and K
is the modal matrix of elasticity.

The above modal matrices are both
diagonal
_yT _ .
M_\i A\i_DIAG[allaZI"'lall"'lan] (7)
_yT _ .
K =V 'CV =DIAG[c1,Cp,++ Ci+.Cn ], (8)

where aj are the modal coefficients of inertia

and cj are the modal coefficients of elasticity
with the calculus relations as follows:

aj =y Ay, i=1n (©)

¢ =y Cy; i=1n (10)

Considering structural damping for all

bearings, the dissipation coefficients are
proportional with the elasticity coefficients

bij =keij i,j=1n (11)

where Kk is the proportionality factor between
damping and stiffness.

In this case, the second matrix product
from eq. (6) becomes

vIBv —kvTcv =kk =H , (12)
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where H is the diagonal modal damping matrix

H =DIAG[h,hy - hi by ], (13)
and hj are the modal damping coefficients:
hi =y By, i=Ln (14)

With the diagonal modal damping matrix

H ., the differential equations in modal
coordinates become
Mi+Hn+Kn=0 (15)

and, as all matrix from (15) are diagonal, the
system of differential equations are decoupled
into n independent equations as follows:

ajfij +hinj +cin=0 i=1n (16)
Dividing the eq. (16) by the modal

coefficient of inertia @; i=1,n, it can be write

function of the modal damping ratio j i:l,_n
and the undamped natural pulsation pj i:l,_n
fii +2Gi i + pfn =0 i=Ln (17)
where:
hs _
Li=—p= i=1n (18)
2,/8iC;
and
pi= |3 i=1n (19)
aj
The modal damping ratio (; can be

calculate from the plot of the time domain
vibration signal for the displacement of an
underdamped mechanical elastic system through

the logarithmic decrement &; as follows

§: R
(j=————— i=1n (20)
\/4n2+6i2
Aj —
Si:iln ] i=1,n (21)
N Aj+N

where Aj is the displacement amplitude of a
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peak at a reference time t and Aj,N is the

displacement amplitude of a peak N periods
away.

Taking into consideration that the
frequency of the under damped vibration of the
1DOF mechanical system is smaller than the
frequency vibration of the same system but

without damping, we can calculate the
undamped natural frequency as follows
— (21)
1-¢2

where fq is the frequency of the underdamped
system vibration and & is the damping ratio of
the system.

3. CASE STUDY. MODAL DAMPING
RATIO CALCULATION FOR A
VIADUCT USING VIRTUAL

INSTRUMENTATION TECHNIQUE

In order to analyze the dynamic parameters

of vibration, there were designed and built two

virtual tools:

-one for acquiring and saving acceleration

values taken during experiments;

-second to analyze the acceleration parameters.
The acquisition of vibration analog signals

is made by acceleration transducers
(accelerometers). The analog signals are
transmitted to DAQ, which may be

inside(internal) or outside (external) of the PC.
The DAQ performs a signal conditioning and
conversion in the digital format. Digital values
are transmitted directly or through a cable into
a USB port on the PC which is running the
signals’ acquisition program. The acquisition
program has some features which provides the
opportunity for memorizing information about
the measurement conditions.

The virtual instrument developed on the
basis of LabView® ver. 8.5 was used to perform
the dynamic tests in site on the viaduct situated
on km 29+602,75 - km 29+801,25 on the A3
Romanian highway. Dynamic actions were
generated by a running four axle 41 ton truck
over standardized height h = 4 cm obstacles on
the road at different standardized speeds
(10km/h to 50 km/h). The experimental data
were obtained on three channels (accelerations
on the axis X, y and z) by a fourth channel DAQ
from National Instrument (NI 9233) through the
USB port of a PC workstation. The used
transducer was a triaxial accelerometer
Bruel&Kjaer type 003 4506 B series 10145,
fixed in the middle sectional plane of the
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viaduct; the axis of the transducer are oriented
as follows: x axis - parallel with the
longitudinal axis; y axis - horizontal transverse
axis; z axis - parallel with the vertical axis.

Figure 2 shows a partial view of the frontal
panel of the virtual instrument used for time
domain and frequency domain analysis of the
vibration signals on three direction. The
displacement signals were obtained by digital
integration of the acceleration signals obtained
from the triaxial accelerometer B&K.

Figures 3, 4 and 5 show the time and
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longitudinal, lateral and vertical vibration.
In order to calculate the damping ratio for
natural modes of vibration, we have to get the

time domain representation of the under
damped vibration, separately for each
eigenfrequency. Because the time domain

representation of the displacements of the
viaduct results as a linear summation of the
eigenvectors, it’s necessary a signal filtering
for each eigenfrequency domain. The signal
filtering is made by the Virtual Instrument
which has a dedicated internal module, with

frequency domain representations of the  different types of filtration bandwidth and
unfiltered displacement signals of the algorithm type.
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Figure 2 Frontal panel of the Virtual Instrument for v=30km/h, h=4mm, with traction
(displacement signal on three channels — time and FFT representation)
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Figure 5 Vertical displacement [mm] representation
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Figure 6 Frontal panel of the Virtual Instrument for v=30km/h, h=4mm, with traction
(filtered signals, Bessel filter, 16-17 Hz bandpass filter type)

21



FASCICLE XIV

A;=0.001482mm
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Figure 7 Lateral displacement [mm] representation (12-13 Hz bandwidth pass Bessel filter type)

Figure 6 shows the frontal panel of the
Virtual Instrument analyzer (partial view) for
the free under damped vibration of the viaduct
with the with following settings:

-dynamic excitation: v=30km/h, h=4mm;
-displacements  obtained  through double
integration of the accelerations signals (with
1Hz high pass cutoff frequency);

-time duration of FFT analysis: 10 sec.;
-filtering method: 16-17 Hz bandwidth pass
Bessel filter type.

Figure 7 shows the displacements
representation (time and frequency domain
representations) of the viaduct lateral vibration.
With the highlighted values on the on the time
domain representation, we can calculate the
logarithmic decrement §, the damping ratio ¢

fn
damped free vibration with
fuq = 16.58Hz as follows:

and the eigenfrequency for the under

the frequency

1, 0.001482

=—In————=0.079
20 0.000305
¢= _ 001 50126
Van? +0.079°
16.58 =16.581Hz

fn _—
V1-0.01262
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4. CONCLUSIONS

The steps to determine the modal damping
by Virtual Instrumentation are:
-FFT analysis of the vibration signal (—natural
frequencies);
-bandwidth pass filtering the signal (—modal
vibration);
-logarithmic decrement &, damping ratio £ and

eigenfrequency fj calculation.
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