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ABSTRACT 
 

The paper studies the problem of the dynamic stability of a high-speed 
shaft, subjected to bending vibrations. The case of normal machine tool 
shafts placed on rigid or flexible bearings is considered for different 
situations. Specific methods of the theory of dynamic system are used. The 
computer simulation results are interpreted. 
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1. INTRODUCTORY NOTIONS 
The paper analyzes circular cross-section 

shafts, supported by flexible (elastic or 
elastoplastic) bearings, with different properties 
in horizontal and vertical planes.  Particular 
cases of bearing properties, which affect the 
rotation motion, are studied from the stability 
point of view. 

The analyzed system consists in a disk 
symmetrically positioned on the shaft, which is 
supported by flexible bearings with different 
characteristics (Fig. 1). The mass of the shaft is 
considered negligible with respect to the mass 
of the disk. 
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Fig. 1. High-speed shaft 

The differential equations of motion are 
obtained, for the undamped bending vibrations 
[1], taking into account the gyroscopic effects 
of the disk. 
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Fig. 2. Reference systems and Euler angles 

 
These equations are determined by means 

of Lagrange equations of the second species 
[5], which are particularized according to the 
elastic characteristics of the bearings. 

The position of the disk in space is 
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determined with respect to the fixed reference 
frame xyzO1  and it is specified by the 
coordinates Cx  and Cy  of the mass centre C   
(assuming that C  remains in the same 
transverse plane, during the vibration) and by 
Euler angles  ,  ,   (Fig. 2), which 
determine the following motions: 
 precession, with angular velocity  ; 

 nutation, with angular velocity  ; 
 spin, with angular velocity  . 

Both movable reference frames, 111 zyCx  
and CCC zyCx , have the origins in the mass 
centre. Reference frame 111 zyCx  has the axes 
parallel to the corresponding ones of xyzO1 , 
while CCC zyCx  is attached to the disk, with 
axis CCz  perpendicular to it.  

2. DIFFERENTIAL EQUATIONS 
OF MOTION 

The differential equations which describe 
the vibrations of the disk-shaft system, that 
rotates uniformly with angular velocity  , 
is [3] 
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with 
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where the following notations have bee used: 
x, y  – displacements of the fixing point of the 

disk on the shaft; 
e  – eccentricity of the mounting of the disk on 

the shaft; 
m – mass of the disk; 

yyxx , k, k, kk 2121  – elasticity coefficients of 

the two bearings, with respect to axes xO1  

and yO1 , respectively; 

12122211 b, a, ba   – static influence 
coefficients. 
The determination of the differential 

equation system of the bending vibration of 
high-speed shafts, taking into account the 
gyroscopic effect, is presented in detail in 
reference [2]. 

The stability of system (1) has been studied 
for certain initial conditions and numerical 
values, in two particular cases: 

 
a) shafts supported by rigid bearings, 
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b) shafts supported by bearings with the same 

rigidity on transverse directions, 
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For such cases, the attractors have been 

found, i.e. the stable limit cycles on which the 
representative point of the motions of the 
system will be situated [4]. 

3. STABILITY OF SHAFTS IN 
PARTICULAR CASES 

3.1. Shafts supported by rigid bearings 
If the shaft is supported by rigid bearings, 

system (1) is equivalent with two independent 
systems [1]: 
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Since equations (7) describe the free 

vibrations of the disk about its mass centre, 
they do not lead to other critical angular 
velocity than that induced by the motion 
described by (6). This system has the solution 
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which corresponds to a circular closed 
trajectory, described by the equation 
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3.2. Shafts supported by bearings with 
the same rigidity on transverse 

directions 
 
Similar to the previous particular case, if 

the shaft is supported by bearings with the same 
rigidity on transverse directions, system (1) is 
equivalent with two independent systems: 
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System (10) has the solution 
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which corresponds to an elliptically closed 
trajectory, described by the equation 
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By plotting the trajectories in the phase 

plane, it can be shown that these trajectories are 
spirals, which start from a point inside or 
outside the ellipse, according to the initial 
conditions. 

In each case, the attractor basin is the 
whole phase plane and the ellipse 
corresponding to the periodical solution is a 
limit cycle attractor, which is characteristic to 
elastic systems acted by periodical forces [4]. 

4. NUMERICAL RESULTS  
Representations in the phase plane have 

been made (Fig. 3-5) for different values of the 
coefficients of the general form [1] 
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all of them considering the initial conditions 
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The second order diferential equation (15) 

is equivalent to the first order diferential 
system 
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which is necessary in order to perform the 
numerical integrations that provided the above 
mentioned representions. 
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If the shaft is supported by rigid bearings, 

the portrait in the phase plane, corresponding to 
equation (9), is circular, the angular velocity 
has the expression 
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while the precession is synchronous and direct, 
with self centering effect as   increases. 

If the shaft is supported by bearings with 
the same rigidity on transverse directions, there 
exist two critical angular velocities, 

 

 
mm
2

2
1

1 ,





 , (18) 

 
while the motion of the center of the shaft is 
composed of a direct and an inverse circular 
precession. 

For 
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the motion becomes a pure inverse precession. 

5. CONCLUSIONS 
Starting from the mathematical model 

described by differential equation system (1), 
corresponding to bending vibrations of 
high-speed shafts, by taking into account the 
gyroscopic effect and by considering some 
particular cases frequently used in machine 
design, the limit cycle attractor has been found, 
for the chosen initial conditions and numerical 
values. 

Diagrams in the phase plane have been 
obtained by integrating the system of 
differential equations of motion. 

For the considered values, the elliptical 
shape of the representations has been shown, 
calculation relationships of the critical angular 
velocities were given, and the conditions for 
inverse precession have been determined. 

The analysis of periodical motions is very 
important, since it separates the stable and the 
unstable configurations of a dynamic system. 
Consequently, the conditions that parameters of 
the system should fulfill for periodical motion, 
when nonlinear effect are taken into account, 
are expected to lead also to the identification of 
varieties in the control space (the space of the 
parameters) which separate the stable and the 
unstable domains. 
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