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ABSTRACT 
 

Modern structures of bridges and viaducts require dynamic isolation 
systems, designed to eliminate or mitigate the destructive effects of intense 
traffic and seismic activity on these constructions. This paper studies the 
problem of viscoelastic type systems bearing in terms of viscoelastic links 
after wear viscoelastic elements were envisaged. It will demonstrate, in 
theory, the connection between the behaviors of viscoelastic nonlinear 
systems and the modification of kinematic and energy parameters of 
structure dynamic response loading by force pulse. 
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 1. Introduction 

 In this paper we propose a theoretical 
methodology for assessing the degree of wear 
of the isolation dynamic systems, corresponding 
to their nonlinear behavior, by identifying 
changes that occur in the dynamic response of 
the structure loaded by strong impulsive type. 
From the theoretical point of view, we will look 
into the same physical model but with the 
following assumptions: 

 elastic and viscous linear forces  
 elastic and viscous forces of nonlinear 

type. 
 The next step is the experimental validation 
of the methodology as follows: 

 experimental measurements will be 
made  when commissioning the 
viscoelastic systems  

 are regularly performed the same types 
of experimental measurements under 
the same conditions  

 there will be carried out a comparative 
analysis of parameters determined 
experimentally in order to identify 
deviations from normal operation of 
isolation dynamic systems. 

2. Physical and mathematical 
modeling of a deck of bridge section 

 To develop a physical model as close to the 
real situation, we started from an existing 
viaduct located on highway A3 Transylvania in 
Romania, at km 29 602.75 801.25 ↔ 29, fig. 1 
(at Savadisla between Tirgu Mures and Cluj) 
[2]. In a simpli fied way a deck of bridge section 
can be considered as a rigid solid with 
triortogonal viscoelastic bearing, fig. 2. 
 

 
Fig. 1 Viaduct on the A3 Transylvania 

highway  
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Fig. 2 Triortogonal viscoelastic bearing  

 
 Each section of the bridge is leaning through 
16 dynamic isolation systems made of 
laminated rubber, fig. 3. 
 

 
Fig. 3 Viscoelastic supports (rubber) 

 
 The matrix expression of the equation that 
characterizes the oscillatory movement of the 
system can be written as, [1]:   
 

I q Cq K q f     (1) 

 
where: q  - generalized coordinates vector;  q  - 

generalized speeds vector;  q  - generalized 

accelerations vector;  
f - generalized forces vector;  I  - inertia 
matrix;  C  - amortizations matrix; K  - 
stiffness matrix. 
       The main elastic axes of elastic bearing are 
parallel to the reference axes.  In this case, the 
movements represented by the variation of 
coordinates, corresponding to the six degrees of 
freedom, may be released as follows:  

 coupled translational motion along 
the axis X and Y (X, y) axis 
rotation;  

 coupled translational movement 
along the Y axis and rotation 
around the X (Y, x) axis; 

 translational movement along the Z 
axis independent of the other ways; 

 rotation around the z(z) axis 
independent of other modes. 

 In this case, the system of di fferential 
equations can be structured as follows: 
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Coupled mode (Y, x) 
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Translation axis OZ 
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Rotation axis OZ 
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 Of the four coupled modes of motion will be 
studied in this paper only the proper motion in 
the vertical direction OZ. The bridge deck 
section is impulsively loaded by passing a four-
axle truck weighing 41 tons over an obstacle 
with height h = 40mm, at a speed of 20 km/h. 
When passing a truck over the obstacle it 
results a force of impulsive application as 
shown in fig. 4, and it should be noted that 
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impulsive force was considered as a rectangular 
function. 
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Fig. 4 Four rectangular pulse trains 

3. Analysis of kinematics and energy 
parameters of the dynamic response of 

the deck 
As I mentioned at the beginning of the paper, 
the dynamic analysis will be performed with the 
following assumptions [3]: 

 elastic and viscous - linear forces  
 elastic and viscous forces - nonlinear 

type: 
2 3

e iz i1 i2F k ( Z sign( Z ) Z Z )    ; 
2 3

v iz i1 i 2F c ( Z sign( Z ) Z Z )       . 
where: Fe - elastic force of an element; Fv - 
damping force on a single item;  i1,  i2,  i1,  i2  - 
coefficients. 

3.1 The mathematical model for the 
linear case 

In this case, the equation of motion is as 
follows: 
 

16 16

iz iz z
1 1

mZ Z c Z k F       (6) 

 
where: m - mass of the deck; Z - moving on 
vertical direction; c iz - damped coefficient of 
bearing on vertical direction; k iz  - coefficient of 
elasticity; Fz - vertical direction force 
application. 

3.2 Mathematical model for nonlinear 
case 

 In this case, the equation of motion is as 
follows: 
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 (7) 

 
 Based on the differential equation of motion 
(7) were plotted and analyzed the following 
parameters, specific vibration deck supported 
on viscoelastic systems:  

1. time response of the kinematic 
parameters of vibration  
2. frequency response of the kinematic 
parameters of vibration  
3. energy dissipated by viscous friction  
4. motion trajectory  
5. power spectral density 

 Solving mathematical model was made 
through the program MATLAB version R2008a, 
assuming the following numerical values of 
coefficients of equation of motion 
k iz=650106N/m; ciz=2.5106 Ns/m; 
m=992103kg;  i1=31250 m-1,  i2=1875105 m-2,  
 i1=31.25m/(Ns), i2=437.5 m2/(Ns)2.  In figures 
7-20 are presented graphical representations of 
kinematic and energy parameters of the 
vibration of the bridge deck. 
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Fig. 5 Displacement on mass m:  

linear case 
 
 The representation in time of mass 
displacement, fig. 5, 6, shows a decrease in 
amplitude of this parameter for the nonlinear 
forces type case. In the spectral representation 
of displacement mass m, in the nonlinear case is 
observed a broadening of the dominant spectral 
components band towards the higher value. This 
change may adversely affect the structural 
integrity of the building because of the 
phenomenon of resonance.  
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Fig. 6 Displacement on mass m:  

nonlinear case 
 
 If the linear case, spectral components of the 
movement was centered around 15 Hz, in 
nonlinear case, the dominant spectral 
components is up to the value of 44 Hz, fig. 7, 8. 
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 Fig. 7 Spectral representation – linear case 
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Fig. 8 Spectral representation – nonlinear case 
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Fig. 9 Acceleration of mass m – linear case 
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Fig. 10 Acceleration of mass m – nonlinear 

case 
 
 Acceleration signal in the linear case shows 
an increase in amplitude to the value of 
1.84m/s2,  against the value of 1.31m/s2 
corresponding to the linear case.  
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Figure 11 Spectral representation – linear case 
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Fig. 12 Spectral representation – nonlinear 

case 
 
 As the displacement, acceleration frequency 
representation shows a broadening of the 
dominant band spectral components to values of 
100 Hz. fig. 11, 12. 
 Hysteresis loops are graphical 
representations of the symmetry axis of 
elasticity coefficients, the energy dissipated in 
the same time being different, fig. 13, 14. In the 
nonlinear case it could be observed a significant 
reducing power dissipation which means that a 
significant amount of energy remains in the 
system. The remaining energy in the system, if 
it has significant value, may lead to the 
appearance of damage in bridge structure. 
 

-1 -0.5 0 0.5 1 1.5 2
x 10-4

-1

-0.5

0

0.5

1

1.5
x 106

Displacement [m]

Vi
sc

oe
la

st
ic

 fo
rc

e 
[N

]

 
Fig. 13 Hysteresis loop: linear case,  

W=256 J 
 
 Phase plane representation, figure 15, 16, 
shows a motion around an apparently attractor 
point for the nonlinear case. 
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Fig. 14 Hysteresis loops: nonlinear case, 

W=29.5 J 
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Fig. 15 Phase plane representation: linear case 
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Fig. 16 Phase plane representation: nonlinear 

case 
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Fig. 17 Periodogram: linear case 
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Fig. 18 Periodogram: nonlinear case 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 The power spectral density graphics for the 
two analyzed cases, fig. 19, 20, reveal that in 
nonlinear case a significant value of mean 
power of the signal is carried by spectral 
components in the range frequency (0 ÷ 118) 
Hz, while in the linear case this interval is (0 ÷ 
30) Hz. 
 

4. CONCLUSION 
 Systems isolators based on rubber, of the 
bridge elements are intensely stressed by 
traffic. Natural aging of rubber and dynamic 
stresses are factors that cause abnormal 
function of isolation systems dynamics that is 
why they must be replaced. The time of 
replacement is calculated by applying the 
methodology described in this document and 
theoretically demonstrated. Based on this 
method it can be developed a methodology able 
to diagnose the structural integrity of concrete 
bridges and viaducts.  
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