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ABSTRACT 

This study deals with the area of nonlinear and random mechanical vibration. It 
was supposed a simple classical vibratory system with translational motion, 
simulated as a single degree of freedom system. It was additionally considered 
that the main parameters characterizing inertia, dissipation and rigidity were 
affected by some uncertainties during the system evolution under the external 
dynamic load. The paper presents a method and a computational tool being able 
to provide useful information regarding the possible response of this system 
subjected by external harmonic loads. The results were comparatively analyzed 
with those obtained by the method of extremes identification of variation interval. 
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1. INTRODUCTION

Modeling and simulation, in the area of 
mechanical systems, are very presented nowadays. 
Furthermore, this is known as computational 
dynamics, that consists by a group of methods and 
procedures, theoretically and scientifically proved, 
being able to provide useful tools for identify, 
modeling, simulate, analyze, and characterization of 
the specifically dynamic behavior of technical systems 
under various external and/or internal perturbations. 

Vibratory systems can be modeled as 
single/multi degree of freedom lumped mass systems 
or, on the other hand, as a continuum mass system. 
For the models framed by the first category, the 
specific parameters that can characterize the system 
intrinsic properties are the mass (providing inertial 
characteristic), the damping (providing dissipation 
characteristic), and the rigidity (providing 
conservative characteristic). 

Taking into account the known mechanical 
systems it can be assumed that some or all of these 
parameters may be affected by certain influences, 
which change, in a variable proportion, their initial 
values. For example, both the environmental 
temperature, and the aging, can affect the damping 
and the rigidity of the passive vibration isolators based 

on elastomeric materials. Changes of mass parameter 
can be occurred at belt-based transporters of granular 
non-cohesive materials. 

Within such conditions, the evaluation of 
operational dynamic behaviour of these systems has to 
consider the potential range of variation for each 
parameter involved to the computational model. Thus, 
the necessity of an uncertainty analysis obviously 
results. 

This study started from a single degree of 
freedom vibratory system, with lumped mass. It was 
supposed that each specific parameter was randomly 
affected by external factors. It was simulated and 
analyzed the system response based on two separated 
methods, within certain initial conditions and 
hypotheses, detailed into the second paragraph of the 
paper. The results were presented, discussed and 
comparative analyzed into the third paragraph. Paper 
also contains a conclusion and future direction 
paragraph. 

2. PROBLEM BASICS AND
WORK HYPOTHESES

The diagram of the proposed working model has 
a schematic representation within Fig. 1. Symbols on 
picture mean as follows: m, c, k respectively denote 
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the mass, the damping coefficient and the rigidity, F(t) 
is the external dynamic perturbation, and x(t) is the 
system response (in terms of displacement). Dashed 
double arrows denote the fact that those parameters 
acquire uncertain values (but into a restricted or prior 
known range) during the operational cycle. 

 

k

m x(t)
F(t)

c

 
Fig.1. Schematic diagram of the SDoF model 

(see test for details) 
 
It was initially stated that the external 

perturbation F(t) has a harmonic expression, 
charaterized by the force magnitude Fo and the 
pulsation ω 

   tFtF o sin                          (1) 
The differential dynamic equation of the model 

in Fig. 1, ignoring the uncertainties of specific 
parameters, is 

       tFtxk
dt

txdc
dt

txdm 
2

2

           (2) 

or, normalized by the mass m and using the short 
doted notation for derivatives 

qxpxnx  22                          (3) 
where (2n) denotes damping factor, p2 denotes 
squared natural pulsation of the system, and q denotes 
the mass normalized external dynamic excitation. 

Applying the Laplace operator to the Eqn. (2), in 
respect to the null initial conditions, results 

  *2 FXkscsm                        (4) 
so that becomes very easy to evaluate the transfer 
function H(s) of the system. Hereby 
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and s denotes the complex variable  js  . 
The evaluations of the system response were 

performed taking into account a few hypotheses. It 
was supposed that the changes of specific parameters 
does not have quick evolutions relative to the natural 
frequency of the system or the perturbation frequency. 
Thus, it does not involve a continuously transitory 
regime on system behaviour. It was adopted a 

computational example based on experimental setup 
of an SDoF system. This is characterized by the 
following values: m = 1 kg, c = 0.5 Ns/m, and k = 480 
N/m. Hereby, the natural pulsation of the system, 
without damping, results p = 21.9089 rad/s and, 
respectively, the natural frequency is f = 3.4869 Hz. 
Taking into account the damping coefficient, the 
values of natural pulsations and frequency become p = 
21.9075 rad/s and f = 3.4867 Hz respectively. Due to 
the main goal of this study, it was supposed that each 
parameter acquires ±20% changes of their average 
value.  
 

3. RESULTS AND DISCUSSIONS 
 
At this moment, it is possible to evaluate the 

ranges of each specific parameter as follows: 
 2.18.0m  kg,  60.040.0c  Ns/m and 
 576384k  N/m.  

Supposing that the changes affect one single 
parameter for each computational test, the evaluation 
of the system response becomes very simple. But, in 
the case of simultaneously changes on two or three 
parameters, the evaluations become difficult. Taking 
into account the extreme and the average values of 
each parameter, the results of the evaluations were 
presented within Table 1 - in terms of natural 
pulsation [rad/s], respectively Table 2 - in terms of 
natural frequency [Hz]. 

 
Table 1. Discrete changes in natural pulsations 

p for
















max

min

c
c
c

avg  kmin kavg kmax 

mmin 

21.9075 
21.9067 
21.9057 

24.4936 
24.4929 
24.4920 

26.8317 
26.8310 
26.8302 

mavg 

19.5949 
19.5943 
19.5936 

21.9080 
21.9075 
21.9068 

23.9992 
23.9987 
23.9981 

mmax 

17.8878 
17.8873 
17.8868 

19.9993 
19.9989 
19.9984 

21.9083 
21.9079 
21.9075 

 
Table 2. Discrete changes in natural frequencies 

f for
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max

min

c
c
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3.4867 
3.4866 
3.4864 

3.8983 
3.8982 
3.8980 

4.2704 
4.2703 
4.2702 

mavg 

3.1186 
3.1185 
3.1184 

3.4868 
3.4867 
3.4866 

3.8196 
3.8195 
3.8194 

mmax 

2.8469 
2.8469 
2.8468 

3.1830 
3.1829 
3.1829 

3.4868 
3.4868 
3.4867 
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Supposing the pseudo-pulsation of the basic 
unperturbed system (p = 21.9075 rad/s) and values in 
Table 1, obviously result the percentage changes of 
this parameter due to the uncertain within the system 
parameters. These values were presented in Table 3. 

 
Table 3. Percentage changes in natural pulsations 

relative to the natural pseudo-pulsation of  
the basic system  

op
p

[%] for
















max

min

c
c
c

avg  kmin kavg kmax 

mmin 

100 
100    
100    

112 
112    
112    

122   
122     
122 

mavg 

89    
89    
89    

100    
100    
100    

110     
110     
110 

mmax 

82     
82     
82     

91    
91    
91    

100     
100     
100 

 
Using the expression of transfer function, Eq.(5), 

and the facilities provided by the Uncertain System 
Representation within Robust Control Toolbox in 
Matlab©, it can be easily evaluate the system 
response (in terms of magnitude and phase of the 
pondered response) for the proposed dynamic model 
affected by uncertainties of main parameters. 

The analyses were conducted step by step, 
successively considering one single uncertain 
parameter. The results were evaluated in terms of 
Bode Diagram for the transfer function. These were 
presented in Figure 2 – for uncertain mass parameter, 
Figure 3 – for uncertain damping parameter, and 
Figure 4 – for uncertain rigidity parameter. 

 
 

 
Fig.2. The Bode diagram of the transfer function for 

the case of mass affected by uncertainties. 
Red dotted line denotes the unaffected system 
 
 

 
Fig.3. The Bode diagram of the transfer function for 

the case of damping affected by uncertainties. 
Red dotted line denotes the unaffected system 
 
 

 
Fig.4. The Bode diagram of the transfer function for 

the case of rigidity affected by uncertainties. 
Red dotted line denotes the unaffected system 
 
 

 
Fig.5. The Bode diagram of the transfer function for 
the case of all parameters affected by uncertainties. 

Red dotted line denotes the unaffected system 
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In addition, it was analyzed the case of the three 
parameters acquiring uncertain values within the 
initial provided ranges. The Bode Diagram for this 
case was depicted in Figure 5. 

It has to be mentioned that, for each case within 
Figures 2...5, it was separately evaluated the situation 
of unaffected system and the correspondent results 
were depicted, in magnitude and phase terms 
respectively, using the red dotted line (all other results 
were depicted using blue continuous line). The graphs 
in Figures 2...5 were zoomed onto the frequency range 
of interest, thus that the analysis of characteristics 
changes can be facilely performed. 

It has to taken into account that the 
computational analyses were done using randomly 
evaluations for the parameters of interest, which 
obviously acquire different values at each running 
step. Hereby, the histograms in Figure 6 present the 
linear distribution of the uncertain parameters m, c 
and k, grouped into 20 bins within the whole range of 
±20% variation of the initial settled values. This is the 
configuration of the values used in Bode Diagrams 
evaluations presented in Figures 2...5. 

 

 
Fig.6. Histograms of values distribution for  

the mass m, damping c and rigidity k respectively 
 
 

4. CONCLUSIONS 
   

Comparative analysis between the discrete 
changes of pulsation, evaluated based on extreme 
values and presented in Table 1, and, respectively, the 
computational evaluations based on diagrams in 
Figures 2...5, reveals following aspects in terms of 
natural pulsation. 

For mass uncertainties, the variation of pulsation 
yields 20...24.5 rad/s – for discrete evaluation, 
comparative to 20...24.1 rad/s – for computational 
evaluation. 

For rigidity uncertainties, the variation of 
pulsation yields 19.6...24 rad/s – for discrete 
evaluation, comparative to 19.8...24 rad/s – for 
computational evaluation. 

In case of damping uncertainties, the variation of 
pulsation obviously acquires very smooth changes, 
around the value of 21.9 rad/s for both types of 
evaluation (see the value of the pseudo-pulsation p = 
21.9075 rad/s, for the initial unaffected system, 
previously presented in Paragraph 2).  

Regarding the case of uncertainties influence on 
the whole set of parameters, the variation of pulsation 
yields 17.89...26.83 rad/s – for discrete evaluation, in 
the same time with 18.75...26.55 rad/s – for 
computational evaluation. 

It is evident that the domains resulted by discrete 
evaluations are rather widely comparative to the 
computational method. However, it has to be consider 
that the differences are small, and the discrete method 
supposes only the extreme and average values of each 
interval, comparative to the second method, which 
involves a large number of bins. Hereby, clearly 
results the advantages of computational method for 
evaluation of the system characteristics. Nevertheless, 
this last method additionally facilitates the future 
evaluations such as impulse or step responses, 
Nyquist-based stability analysis, gaining the pole-
zeros map. 
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