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Abstract 
This study is an attempt to answer questions related to a new scanning technology applicable in nondivest and 
noncontact conditions. MUltiple SIgnal Classification (MUSIC) algorithm uses an array of N transceivers to 
assess the location of closely spaced scatterers placed in various geometries. MUSIC algorithm works together 
with the Foldy-Lax (FL) formulation of the full multiple scattering model and the distorted-wave Born 
approximation (DWBA) model. The experiments were carried out in noisy conditions in order to highlight the 
noise robustness of the MUSIC algorithm and the capability of its approximations in target location. The average 
visibility index over the wavelength range was employed to evaluate the accuracy and stability of the FL and 
DWBA approximations. The FL formulation provides signal reconstruction for target location with fair accuracy 
and motivates the requirement for a new scanning technology. 
 
Keywords: inverse scattering; MUSIC algorithm; Foldy-Lax formulation; distorted-wave Born approximation; 
average visibility index 

 
 

1. INTRODUCTION  
 

In this study, the MUltiple SIgnal Classification (MUSIC) method is used for locating a finite 
number of small scatterers embedded in an arbitrary background medium or in a medium with known 
properties [1–4]. An inverse scattering problem establishes the nature of an inhomogeneity such as the 
location, geometry, and/or material property, viewed as a scatterer, by using the knowledge of the 
scattered field. A large amount of data related to inverse scattering and MUSIC has been widely used 
in ultrasound and microwave applications.  

According to the findings reported in [5], this problem can be seen as a scattering problem in 
which incident plane waves scatter off one or more impenetrable objects. MUSIC uses the so-called 
‘singular value decomposition of the multistatic scattering matrix’ technique (SVD). SVD is 
independent of ‘the composition of the scatterers to be analysed’ and is dependent only on the 
background Green function  G0(r,r’) and on the source distribution [1, 6]. SVD makes it possible to 
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decompose a matrix A (size n × d) into a sum of rank-one matrices by a factorisation in the left and 
right singular vectors, respectively, and a diagonal matrix whose entries are the singular values of A. 
The MUSIC algorithm uses two approximations: the Foldy-Lax (FL) formulation of the multiple 
scattering model [7–9] and the distorted-wave Born approximation model (DWBA) [9-15]. DWBA is 
only relevant at small incident angles and at small exit/reflection angles. The Foldy-Lax 
approximation for scattering by a collection of small obstacles provides an approximation of the far-
fields as an asymptotic expansion which allows us to distinguish between close placed obstacles from 
those which are placed away from each other. Here, the self-interactions at the target locations are 
excluded. Nevertheless, in recent decades, only simple geometries were analysed, mainly in the 
frequency range of the electromagnetic field [9–11].  

In our case, we are focusing on the data collected at 5, 10, 50, and 100 Hz in order to develop 
a new scanning technology applicable in a nondivest and noncontact condition. To our knowledge, 
results in these frequency ranges have not been reported in the literature. Normalised wavelengths of 
1, 0.5, 0.1, and 0.05 are addressed, ensuring the condition in which the scatterers are much smaller 
than the wavelength is respected. Additive white Gaussian noise (AWGN) having a variation of 
0.0009 and 0.09 is used to investigate the noise immunity. Similarly, the noise-free case is analysed 
for comparison. The simulation results are presented and discussed relative to the four scatterers’ 
spatial distribution geometries. An estimation of the scattering amplitudes provided by the MUSIC 
pseudospectrum is performed. The average visibility index over the wavelength range is evaluated for 
the best reconstruction solution. 

 
2. EXPERIMENTAL 

2.1 Helmholtz equation 
 

For a time-harmonic acoustic wave  with frequency ω, the space-dependent 
part  satisfies the Helmholtz equation in the space-frequency domain  

, (1)

in , where D denotes an object that is situated in a homogeneous isotropic medium with density  
and speed of sound c. r is the position vector of any point in the propagation space.  is the total 
field produced by the distribution of sources . The transceivers are placed in N. 

, where  is the known wavenumber of the background medium, and 
 is the scattering potential of the targets to be computed, which is defined for M targets as 

(2)

where , m = 1, 2, …, M are the target positions (to be reconstructed); , m = 1, 2, …, M are 
known target scattering strengths; and  is Dirac’s delta function. The target scattering strengths is 
the scattering coefficient for the m-th scatterer, which characterizes how strongly the scatterer interacts 
with incident waves and can be determined from enforcing energy conservation. Starting from this 
point, the variable ω is ignored with the meaning that the results hold for a given frequency. 

 
2.2 Inverse scattering problem formulation 

2.2.1 Foldy-Lax formulation 
 

The FL formulation provides a model for the scattered wave field when a collection of M point 
scatterers located at , m = 1, 2, …, M is considered at a particular frequency ω that is still 
suppressed [12–14]. The total field is computed as the sum of the scattered field and the incident field 
for the kth transceiver as follows: 
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, 
(3)

where the target scattering strength  for the mth point scatterer is known, and  is the free-
space/background Green function. In the scatterer locations,  and the background Green function 
is singular:  

, (4)

The Green function significance is an outgoing wave observed at  that is produced by a point 
source placed at .  

If the self-interactions at the target locations are excluded, then the FL formulation of (3) is 

 

. 

(5)

The FL framework consists of a set of M coupled linear equations with the known data on the 
incident field , scatterer locations , and target scattering strength . In matrix form, (3) becomes 

, , , and matrix A (size M × M) is as 
follows: 

 

. 
(6)

Based on Green’s representation theorem and assuming a coincident array in the low-frequency 
acoustic field, we can consider that the incident waves  are equal to the background 
Green function  evaluated for a source point r′ =  at a transmitter location. Furthermore, the 
target outputs are equal to a complete Green function  of the combined background with the 
addition of the target medium for a source point r′ =  at the kth emitter and, similarly,  for the 
jth receiver location. A coincident array meets the condition , and (3) and (5) can be rewritten 
as 

 

(7)

(8)

When different transceiver elements are considered in (7), the matrix formulation (6) allows for 
building the so-called multistatic scattering matrix in the FL approximation, which is shown to be 
symmetric due to the reciprocity of the complete Green functions:  

. (9)
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The matrix formulation (9) is a correction of Green’s function accounting for the scattering of 
considered targets. 
 
 

2.2.2 Distorted-wave Born approximation (DWBA) model 
 

When the scattering targets are characterised as weak scatterers, the DWBA model can be used to 
analyse the distorted wave [9, 15]. DWBA does not consider multiple scattering effects between the 
targets of interest and has been successfully applied to a given region where homogeneous scatterers 
exist. This model is quite limited for inhomogeneous scatterer distributions. If the scattering targets 
show acoustic properties different from the background medium, then the DWBA approximation can 
be used: 

 (10) 

The multistatic scattering matrix within the DWBA becomes 

 
(11) 

The complete Green function does not appear in DWBA, and the only unknowns are the target 
locations . DWBA estimates the target locations from the multistatic scattering matrix when the 
condition M N is met. 
 
2.3. MUSIC algorithm 
 

The MUSIC algorithm decomposes an observed signal into signal and noise components, and 
uses the properties of the signal vectors to be orthogonal to the noise vectors. MUSIC operates in the 
noise subspace based on the Green function with a high spatial resolution of the reconstructed objects; 
the phase patterns provided by the Green function are the mean of the identifying positions. 

Let there be M point scatterers located at . According to the results reported by 
Kirsch [16], the MUSIC algorithm is based on the SVD of K matrix and uses the discrete version of 
the multistatic scattering matrix (9) and (11) to define the wave scattering amplitude. When N  M, 
based on the K matrix, two matrices , j = 1, …, N and m = 1, …, M consisting of the background 

Green function vectors evaluated at the scatterer locations and  are defined so that . 
 is the adjoint of S. MUSIC characterises the range of a self-adjoint operator. As mentioned in [16], 

when N  M and if the location of the point scatterers ensures the condition that matrix S has maximal 
rank M, then matrices K and S coincide.  

Further, the problem of estimating the locations of targets follows the signal subspace method 
proposed by Marengo and Gruber [17]. A signal subspace S and noise subspace N are defined. Let us 
consider the eigenvalues and related eigenvectors of the K matrix. When the eigenvectors correspond 
to significant eigenvalues, then the S signal subspace is spanned. When the corresponding 
eigenvectors have eigenvalues smaller than the noise level, they span the noise subspace. Let us 
consideras the projection of matrix K onto the noise subspace. According to [18–20], a simpler and 

faster mathematical approach is to consider a steering vector  with the property  
. By plotting the pseudospectrum function ,  MUSIC is able to determine the 

locations of the scatterers, as sharp peaks in the MUSIC algorithm do not request data in the shape of 
the small scatterers. The pseudospectra defined by MUSIC in the DWBA approximation use the 
background Green function vectors evaluated at the scatterer locations,  while the 
pseudospectra in the FL model are related to the complete Green function. 
 
2.4. Selection algorithm 
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The target spatial distribution is dependent on the experimental design. We studied the target 
location problem for four spatial distribution geometries. The MUSIC algorithm is implemented for 
small noise n1 and a large amount of noise n2 that will disturb the detection of the scatterers. The 
algorithm used to select the higher signal amplitudes , is as follows: 
Step 1: Define the set of parameters as , where n1 and n2 denote AWGNs having a 
variance of 0.0009 and 0.09, respectively; 

   Define the results as , where λ = (1, 0.5, 0.1, 0.01) and P = (noise-free, n1, n2) 
(see Table 1); 
Step 2: Generate the possible combinations, the experimental parameters and results are distributed 
into two lists , and ;  
Step 3: Extract the highest amplitude  values from last two lists L1 and L2 and generate the  list 
{ , } (see data in Tables 2 and 3); 
Step 4: Run steps 2 and 3 for 16 times for each target distribution; 64 measurements are made. 

2.5. Average visibility index  

The average visibility index  is used as a quantitative characteristic of the representation of the 
MUSIC pseudospectrum. The accuracy of the reconstructed scattering amplitude for the scatterers 
placed in various spatial distributions with sizes smaller than the wavelength is evaluated based on the 
so-called average visibility index, as follows [22]: 

                                               (12)  

 denotes the amplitude provided by the MUSIC pseudospectrum, indexes ‘max’ and ‘min’ 
correspond to the maximum and minimum amplitudes and n is the number of simulations.  ranges 
from 0 to 1. 
 

 
3. RESULTS AND DISCUSSION 

3.1 Simulation framework 
  

The simulation approach was implemented in the MATLAB 2017b environment [21]. The 
simulation results were obtained for a nondispersive background model consisting of a uniform and 
constant medium velocity. Six scatterers were placed at different locations. The propagation space was 
considered a rectangular grid (x, z). The acoustic wave propagation was directed downward toward the 
negative z. The propagation space grid was dynamically correlated to the wavelength values in order 
to ensure the condition that the size of the scatterers is much smaller than the wavelength. Both the 
noise-free and noisy cases were considered.  

The following parameters were used: 
 N = 10 transceivers in a coincident linear array; 
 M = 6 closely spaced scatterers having a spatial distribution into triangle (T), parallelogram 
(P), diamond (D), and ellipse (E) geometries; 
 In order to transform the wavelength values into a range from 0 to 1, we normalize them by 

dividing the current value by the maximum value. Normalised wavelengths are λ = 1, 0.5, 0.1, and 
0.05; 

 AWGN with variances of 0.0009 and 0.09 is added;  
 
3.2 Results 

 
Figure 1 displays plots of the chosen discrete locations. The transceiver array is symmetrical and 

is located at (-20,0), (-15,0), (-10,0), (-5,0), and (-2,0). The targets are located as follows: triangle (T): 
(0,-8), (-1,-9), (1,-9), (-2,-10), (0,-10), and (2,-10); parallelogram (P): (-2,-8), (0,-8), (2,-8), (0,-9), (2,-
9), and (4,-9); diamond (D): (0,-6), (-2,-8), (0,-10), (2,-8), (0,-7), and (0,-9); and ellipse (E): (0,-8), (-
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3,-9), (3,-9), (-3,-10), (3,-10), and (0,-11). All positions are relative to wavelength . The target 
separations are , , and 2. The target scattering strength is τ = (1, 1.3, 1.6, 1.6, 1.3, 1). 

Some examples of the pseudospectrum and scatterers detection are shown in Figures 2 and 3 for a 
triangle spatial distribution. Figure 4 plots the results of scatterers detection in noisy case n2 for the 
diamond and ellipse spatial distributions. 

 

 
a) 

 
c) 

 
b) 

 
d) 

 

Fig 1. 10 transceivers (depicted as squares) and 6 targets (depicted as circles). The spatial 
distributions are represented as a) triangle (T), b) parallelogram (P), c) diamond (D), and d) 

ellipse (E). 

 

a) 

 

b) 
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c)  d) 

 

Fig 2. MUSIC pseudospectrum and targets detection for 3D (left column) and 2D (right 
column) visualisation for n1, λ = 1, and triangle (T). a–b) FL approximation and c–d) DWBA 

approximation. 

 
a) 

  
b) 

  
c) d) 

Fig 3. MUSIC pseudospectrum and targets detection for 3D (left column) and 2D (right 
column) visualisation for n2, λ = 1, and triangle (T). a–b) FL approximation and c–d) DWBA 

approximation. 



ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI – FASCICLE II 

█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████ 
 
 
 
 
. 

 8

a)  b) 

c)  d) 

 

Fig 4. Scatterers detection for diamond (top line) and ellipse (bottom line) in noisy case n2 
for FL and DWBA approximations. 

According to the data presented in Table 1, an improvement of generally 10% in signal 
amplitudes ( ) of the pseudospectra is achieved. As expected, the case of noise-free scattering returns 
the same results.  

Table 1. Average amplitude ( ) of scattered signals attained in simulation experiments for 2D 
obstacles, extracted from list L1 and L2, for FL and DWBA approximations. 

 
Geometry AWGN 

noise 
SNR 
(dB) λ FL DWBA 

     (T) 

n1 22.38 1 
72073 63082 

0.5 
0.1 

13173 12729 
0.05 

 
n2 

 
6.3 

 
1 480 469 

0.5 
0.1 

187 177 
0.05 

 
 

(P) 

 
 

n1 

 
 

22.66 

 
1 97896 91591 

0.5 
0.1 

44955 43475 
0.05 
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Geometry AWGN 
noise 

SNR 
(dB) λ FL DWBA 

n2 8.9 1 
562 560 

0.5 
0.1 

191 187 
0.05 

(D) 

 
n1 

 
22.12 

 
1 85708 77328 

0.5 
0.1 

69885 61827 
0.05 

 
n2 

 
3.3 

 
1 687 676 

0.5 
0.1 

524 514 
0.05 

(E) 

 
n1 

 
21.62 

 

 
1 93064 75146 

0.5 
0.1 

30912 24563 
0.05 

n2  
9.32 

 

1 
661 661 

0.5 
0.1 

200 201 
0.05 

 
The data presented in Tables 2 and 3 shows examples of the highest selected amplitude of the 

reconstructed signals  extracted from L1 and L2. In a noisy environment, FL provides an efficient 
solution for the inverse scattering problem. In addition, the amplitude is much easier to acquire in the 
simulation and facilitates target localization. Diamond (D) and ellipse (E) distributions have larger 
amplitude values in a noisy environment. For all target spatial configurations, better results were 
obtained at the normalised wavelengths λ = 1 and 0.5.  

Table 2. Highest FL results across various spatial distributions and wavelengths for AWGN 
noise-added (n1 and n2) and noise-free values. 

 
Noise-free n1 n2 

λ Geometry FL λ Geometry FL λ Geometry FL 
0.5 (D) 8.7610+33 0.5 (P) 6.9510+6 1 (D) 932 

0.5 (D) 8.7610+33 0.5 (E) 4.7410+6 1 (T) 1009 

 
Table 3. Highest DWBA results across various spatial distributions and wavelengths for 

AWGN noise-added (n1 and n2) and noise-free values. 
 

Noise‐free  n1  n2 

λ  Geometry  DWBA  λ  Geometry  DWBA  λ  Geometry  DWBA 

1  (D)  4.6810+33  0.5  (E)  6.0110+6  1  (D)  915 

0.5  (D)  4.6810+33  0.5  (E)  4.0010+6  1  (T)  992 
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Fig 5. Average visibility index  distribution over normalised wavelength. 

The average visibility index  distribution over the wavelength is presented in Fig. 5. We find 
significant differences between the backscatter amplitudes with approximations and noise conditions. 
The reconstruction effect is provided with fair accuracy for pseudospectra provided by the FL 
approximation with larger  values. 

 
3.3. Discussion 
 
The MUSIC algorithm provides information on the target locations using the poles in the 

pseudospectrum. Once the target locations are reconstructed from the poles in the MUSIC 
pseudospectrum, the unknown target scattering amplitudes  are computed by using the values of 
these locations in equations (9) and (11) and solving the resulting system of equations. The scattering 
amplitudes  measurements at a fixed frequency were used as performance indicators. The identified 
poles of the MUSIC pseudospectrum will peak at the same target locations but with different lobe 
structure and amplitude .  

The data displayed in Figures 3 and 4 clearly indicates the influence of noise on the scattered 
field. For a noisy simulation framework (AWGN noise n2), the scattering reconstruction results are 
almost similar, and we cannot determine which of the two approximations is the most efficient 
approach. Here, the targets are not ‘well resolved’, strong multiple scattering exists, and the DWBA 
shows low performance. For higher levels of noise n2, there are spurious peaks that affect the 
scatterers detection (pseudospectra in Figs. 3a and 3c). By contrast, at a lower noise level (AWGN 
noise n1), FL is a better choice (Fig. 2). A comparison between the reconstructed and exact localised 
targets in a noisy environment indicates that not all scatterers are correctly reconstructed. More 
specifically, the scatterer locations are correctly indicated (as a group of scatterers) but the scattering 
amplitudes relative to the exact case (i.e., a single scatterer) show errors. The best target reconstruction 
and separation were provided for the diamond and ellipse geometries, as illustrated in Fig. 4. Under 
such circumstances, the SNR values dramatically decreased. The reported data suggest that the Foldy-
Lax formulation is a better solution for solving inverse scattering problems and locating point targets. 
The pseudospectra provided by the FL approximation have larger signals. FL approximation 
feasibility was demonstrated by the average visibility index  distribution over the wavelength. 

The results are in accordance with those reported by Ramm and Gutman [23]. They pointed out 
that there is no single approach to obtain a proper signal reconstruction using inverse scattering 
problems. Various solutions can be efficiently implemented for particular targets’ spatial localisations. 
Baussard and Boutin [24] reported on an improved method called ‘a recursive time-reversal MUSIC 
algorithm’ devoted to improving the detection of closely placed targets. In noisy cases, the detection 
and the identification of the locations of the targets failed. Gruber et al. [17] pointed out that the 
MUSIC algorithm can locate targets beyond the DWBA approximation but under the assumption of a 
large number of targets relative to the number of sources. By contrast, our results indicate that MUSIC 
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succeeds in detecting and localising targets placed in various spatial positions when the number of 
targets is lower than the number of transceivers. The proposed method corroborates all parameters and 
indicates that the diamond (D) and ellipse (E) geometries enable the best target localisation. 

The numerical values gathered during the simulations showed that the efficiency of the target 
location depends slightly on the placement of the interior points, but it is strongly dependent on the 
wavelength and the level of noise. In paper [25] the problem of point scatterers reconstruction in a 2D 
space/waveguide using a MUSIC type algorithm connected with a factorization method for 
waveguides is reported. This method is applied for scatterers satisfying the Dirichlet and Neumann 
condition in the Born approximation. The reported numerical implementations are “sparse objects” for 
the case of M = 3, 4-point scatterers and N = 10. Small amounts of noise were used for both 
simulations and the reported reconstruction results were perfect.  

Although the current simulation results are acceptable, there is a main source of uncertainty in the 
scattering measurements provided by uncertainties in the relationship between the scattering amplitude 
and the measurement of the scattering at a single angle, i.e. on the incident direction. The time 
computation is reasonable as it does not exceed 10 s for 3D representations despite the large number 
of parameters used in the simulation. However, some limitations were identified: 
 when multiple scattering between the scatterers becomes important, the DWBA can no longer be 

employed; 
 the requirement for a priori knowledge of the background environment and free-space/background 

Green’s function as mentioned in [17]; 
 FL is restricted to the reciprocal media condition of the background and complete Green functions 

where  and  but this condition does not severely restrict the 
generality of the MUSIC approach. 

 
4. CONCLUSIONS 

 
The numerical results showed a slight effectiveness of the Foldy-Lax approximation for scatterers 

location. We can preliminarily conclude that the inverse scattering problem is a proper approach for 
multiple target locations, particularly for targets in close proximity such as those having diamond and 
ellipse geometries with a target separation of  and . Improved results will be reported in the 
future. 
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