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Abstract 
Vehicle scheduling problem consists in assigning vehicles to a set of time-tabled trips, wishing to minimize the 
objective cost function. Two aprroaches of the problem were studied: single-depot vehicle scheduling problem 
(SDVSP) and multiple-depot vehicle scheduling problem (MDVSP). There are known several methos of solving 
this problem based mainly on liniar programming, branch and bound, graph colouring thechniques. SDVSP is 
solvable in polynomial time, while MDSVP is NP hard. The main propose of this paper is to present a model 
based on Petri nets for the vehicle sceduling problem. We defined priced timed workflow nets as a suitable 
model for SDVSP. We tried to emphasize the advantages of using Petri nets in order to describe this kind of 
planning problems. 
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1. INTRODUCTION 
 
The vehicle-scheduling problem (VSP) can be described as follows: for a set of trips between 

a set of locations with a known starting and ending time, we have to determine a minimum-cost 
schedule such that each vehicle has been assigned one trip and each vehicle performs a correct 
sequence of trips. To simplify the problem, we can consider that all vehicles are identical. A schedule 
for a vehicle is a sequence of blocks, each block is a departure from the depot, a travel between trips, 
or a return to the depot. The cost function is the sum of fixed costs and operational (variable) costs.  

The single-depot vehicle scheduling problem (SDVSP) is solvable in polynomial time [1], and 
multiple-depot vehicle scheduling problem (MDVSP) is known as NP hard [2]. 

Attempts have been made to have the SDVSP solved as a minimum-cost flow problem, a 
quasiassignment problem, a linear assignment problem, a transportation problem, or a matching 
problem. Consider n – the number of trips to be covered by vehicles. Since the eighties, Bokinge and 
Hasselström presented a minimum-cost flow approach [3] that allowed a significant reduction of the 
size of the model in terms of the number of variables, at the price of an increased number of 
constraints. Paixão and Branco developed an quasiassignment algorithm with a complexity of O(n3) 
specially designed for the SDVSP which (in practice) seemed to be better than the approaches based 
on transportation and linear-assignment models [4]. The quasiassignment algorithm is a modified 
version of the Hungarian algorithm for the linear assignment problem. In [5] it is proposed an O(n3) 
successive shortest-path algorithm for the SDVSP. Another O(n3) successive shortest-path algorithm 
can be seen in [6]. In [7] the SDVSP with multiple vehicle types is presented as a non-preemptive 
online multiprocessor-task fixed-interval scheduling model and an algorithm based on the first in-first 
out rule to find the optimal vehicle scheduling solution is proposed. 

The most used methods for solving MDSVP are based on branch and bound technique [8, 9], 
graph colouring [10, 11], integer linear programming and other mathematical-heuristics [2, 12, 13], 
iterated local search [14]. 
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Petri nets [15] are a formalism for the representation of physical components and activities in 
a system and also for logical interactions (such as sequentiality, concurrency, synchronization, and 
conflict) [16]. Time duration can also be introduced using timed Petri nets [17, 18]. The popularity of 
this formalism is due to its simplicity and the possibility of its graphical representation. 

This paper presents the basic notions from Petri nets theory and shows how this formalism can 
be effectively used for describing and analysing SDVSP so that we can take advantage of the 
theoretical results obtained. 

 
2. PRELIMINARIES 

  
A Petri net is a tuple Σ = (P, T, F, K, W), where P and T are two finite, non-empty sets (of 

places, respectively transitions), P ∩ T = ∅, K : P → N∪{∞}, represents the capacity of each place p 
∈ P; if K(p) = ∞ we say that the location p has infinite capacity. F ⊆ (P × T) ∪ (T × P) is the flow 
relation and W is the weight function W :  (P × T) ∪ (T × P) → N, where W(x, y) = 0 iff (x, y) ∉ F. 

In this paper we use places to model states and transitions to model events. 
We define a marking of a Petri net as a function M : P → N with M(p) ≤ K(p), for  all p in P, 

representing the number of tokens in each place.   
A transition t is enabled at a marking M  (denoted by M[t〉 Σ,), iff M(p) ≥ W(p,t) for all p ∈ P. 

If t is enabled at M, then t may fire resulting a new marking M′, where  M′(p)= M(p) - W(p, t) + W(t, p) 
≤ K(p) for all p ∈ P.  We write M[t〉ΣM′. The transition relation can be extended to sequences of 
transitions. M′  is accessible from M (M′ ∈ [M〉 Σ) if there is a sequence of transitions that may fire and 
we can obtain the marking M′ starting from M. 

A timed Petri net (TPN) is a classical Petri net where tokens are associated “ages” which 
measure the time since their apparition. In a TPN transition arcs are labelled with time-intervals which 
restrict the “ages” of tokens that can be created or destroyed. A marking M defines the numbers of 
tokens and their “ages” for each place p, therefore a marking is a multiset over P × N. We can denote 
a token in a marking by (p, x) representing its place and its “age”. A transition t may fire if there are 
tokens with the right “age” in its input places. These tokens will be removed when the transition fires. 
In the output places of the transition the new tokens have “ages” according to the time-interval of the 
transition. 

A Priced Timed Petri Net (PTPN) is a tuple N = (Σ, C), where Σ  is a timed Petri net and         
C : P ∪ T → Nk is the cost function assigning) firing costs to transitions and also to places. If the costs 
are ignored in a PTPN then we obtain a timed Petri net. The markings and the firing rule are as in 
TPN. The firing cost of an enabled transition t is defined as C[M→M′] = C(t) + ∑ 𝐶𝐶(𝑝𝑝)𝑝𝑝∈𝑃𝑃 . 
 The cost-threshold problem: Is there a final marking in Fin (where Fin is the set of final 
markings) and a computation σ starting from the initial marking such that we have C(σ) ≤ v, v known? 
This problem is called the cost-threshold coverability if Fin is upward-closed, and it is called the cost-
threshold reachability if there is only one final marking i.e. Fin has only one single marking as 
element. 

The cost-threshold coverability problem is decidable for PTPN with nonnegative costs [19]. 
The cost-threshold reachability problem is undecidable for PTPN, even if all costs are zero 

[19]. 
The cost-threshold reachability problem for PPN is decidable [19]. 
Consider a Petri net Σ. Σ is called  workflow net (WF net) if it satisfies two conditions: 

1) Σ has two special places i (the input place) and o (the output place), such that i has no input 
arcs, and o has no output arcs. 

2) any node in the graph representation of Σ is on a path from i to o.  
For a workflow net, Σ, denote by Mki its initial marking with k tokens in the input place and all 

the other places empty and by Mko the final marking with k tokens in the output place and all the other 
empty places, k∈ N.   

The most known correctness criteria for a workflow net is called soundness. A workflow is k-
sound if the system starts with k tokens in the initial place and all the other places are empty, then it 
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terminates its execution, at the end, the place o should contain k tokens, all other places should be 
unmarked, and there are no dead tasks. Σ is k-sound if for any M ∈ [Mki〉 Σ we have Mko ∈ [M〉 Σ [20, 
21, 22, 23]. k-soundness problem is decidable. 

Define a price workflow net (PWF-net) as a PPN whose underlying Petri net is a workflow 
net. A price timed workflow net (PTWF-net) as a PTPN whose underlying Petri net is a workflow net. 

The cost-threshold coverability problem is decidable for PTWF-nets. 
The cost-threshold reachability problem for PWF-net is decidable, but it is undecidable for 

PTWF- nets.  
The proof of the above statement follows immediately from the undecidability of  the cost-

threshold reachability problem for PTPN because  there is only a final marking in a workflow net. 
The single-depot vehicle scheduling problem (SDVSP) is an optimization problem for the 

management of transport companies. We are given a depot with k  available vehicles and n trips 
denoted by T1, T2, …, Tn. For each trip Ti, 1 ≤ i ≤ n it is known the starting time si and the ending time 
ei. Denote by τij the time needed to pass from the trip Ti to the trip Tj. A feasible pair of trips is a pair 
(Ti, Tj) such that we have ei + τij ≤ sj. For each pair of trips (Ti, Tj) we can associate a cost cij ≥ 0. We 
can consider cij = + ∞ if (Ti, Tj)  not feasible or if i = j. There is also a cost c0i and a time τoi required to 
get from the depot to the trip Ti, and also a cost cio and a time τio required to get from the trip Ti to the 
depot. 

The SDVSP consists in assigning vehicles to trips such that: each trip have been assigned one 
vehicle, each vehicle starts and ends at the depot and pass through feasible pairs of trips, the number of 
vehicles in the depot does not exceed the depot capacity, the sum of all costs generated by the used 
vehicles is minimum. 
 

3. MODELING TECHNIQUE AND DISCUSSIONS 

For the simplicity of the model, we will consider that all vehicles are equivalent in all aspects. 
Considering the definition of a priced timed workflow net, we can easily see that it is suitable 

for modelling and planning the routes of vehicles. The initial place, i, represents the initial state of the 
depot with the capacity equal to the number of available vehicles, k. The output place, o, represents the 
final state of the depot, having the same capacity as the initial place. All the other places have the 
capacity equal to one. The places symbolize the trips and the tokens symbolize the vehicles. A 
transition represents a travel between two trips. The initial marking has k tokens in the place i and all 
the places are empty and symbolize that all the vehicles are in the depot. The final marking has k 
tokens in the place o and all the places are empty and that means that all the vehicles have returned to 
the depot. The firing of a transition means that a vehicle made a transfer from one trip to another.  

We add an “age” for each token in a place as a natural number. Each arc of the net is labelled 
with a time-interval (i, j), with i, j natural numbers. A transition may fire if its input places have tokens 
with “ages” corresponding to the intervals of the arcs. Tokens created by transitions will have “ages” 
in the intervals of the output arcs. 

We also add costs to transitions because there may be waiting costs and also costs to get from 
one trip to another and we add costs to places because each trip has a cost to complete. 

Unfortunately the cost-threshold reachability problem for PTWF-nets is undecidable. If we 
can give up to time duration, it results that the cost-threshold reachability problem for PWF-net is 
decidable. 

To illustrate the above statements, Fig. 1 represents a simplified model of a depot with two 
vehicles that can travel on two routes denoted by A and B, respectively. The trips on the first route are 
denoted by a and a′, and those on route B are b and b′. The transition tab can move a vehicle from route 
A to route B (from location a to location b′), and transition tba can move a vehicle from route B to route 
A (from location a to location b′). The transitions ta3 and tb3 represent the returns to the depot. We note 
that in the place i (which symbolise the depot) we have two vehicles with the “age” 0 (the beginning 
of the working time). The figure also shows the time intervals for the transitions and the costs. 

There may be cases when some trips must take place before others and, as a result, we can 
define workflow nets with priorities. Priorities are defined as a relation, ρ. t ρ t′ represents the situation 
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when the transition t′ has priority over t. In [23], it was proven that soundness for priority WF nets is 
undecidable. One solution is to design the network so that the trips take place in a certain order (i.e. 
the transitions fire in a certain order), without the need to introduce priorities. 

 
 

 
 
 
 
 
 
 
 

 

 

Fig.1. A vehicle scheduling workflow net 
 

4. CONCLUSIONS 
 

 Modelling vehicle scheduling problem with priced timed workflow nets seems natural. The 
soundness property which ensures that all vehicles return to the depot, is decidable if we model the 
problem with classical workflow nets. Unfortunately, cost-threshold reachability problem is 
undecidable for PTWF- nets, but it is decidable for PWF-nets. One of our future concerns will be to 
find special classes of PTWF-nets for which cost-threshold reachability problem is decidable. The 
graphical representation makes the model easier to understand. 
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