An implemented algorithm for computing the distributive lattice associated to a Cohen-Macaulay bipartite graph

Cristian Ion

“Dunarea de Jos” University of Galati, Faculty of Sciences and Environment, 111 Domneasca street, 800201 Galati, Romania
Corresponding author: cristian.adrian.ion@gmail.com

Abstract
We give an implemented algorithm for computing the distributive lattice associated to a Cohen-Macaulay bipartite graph and, consequently, the set of all minimal vertex covers of a Cohen-Macaulay bipartite graph

Keywords: Cohen-Macaulay bipartite graph, vertex cover, distributive lattice, algorithm.

1. INTRODUCTION

In the first part of the paper we introduce the definitions and the concepts that we operate with and we fix the notation exactly as we did it in [3] and [4].

Let $G = (V, E)$ be a simple (i.e. finite, undirected, loopless and without multiple edges) graph with vertex set $V = [n]$ and the edge set $E = E(G)$. A vertex cover of G is a subset $C \subseteq V$ such that $C \cap \{i, j\} \neq \emptyset$, for any edge $\{i, j\} \in E(G)$. A vertex cover C of G is called minimal if no proper subset $C' \subset C$ is a vertex cover of G. A graph G is called unmixed if all minimal vertex covers of G have the same cardinality. Let $R = K[x_1, x_2, \ldots, x_n]$ be the polynomial ring in n variables over a field K. The edge ideal of G is the monomial ideal $(I(G))$ of R generated by all the quadratic monomials $x_i x_j$ with $\{i, j\} \in E(G)$. It is said that a graph G is Cohen-Macaulay (over K) if the quotient ring $R/I(G)$ is Cohen-Macaulay. Every Cohen-Macaulay graph is unmixed.

Let $P_n = \{p_1, p_2, \ldots, p_n\}$ be a poset with partial order \leq. Let $G = G(P_n)$ be the bipartite graph on the set $V_n = W \cup W'$, where $W = \{x_1, x_2, \ldots, x_n\}$ and $W' = \{y_1, y_2, \ldots, y_n\}$, whose edge set $E(G)$ consists of all 2-element subsets $\{x_i, y_j\}$ with $p_i \leq p_j$. It is said that a bipartite graph on $V_n = W \cup W'$ comes from a poset, if there is a finite poset P_n on $\{p_1, p_2, \ldots, p_n\}$ such that $p_i \leq p_j$ implies $i \leq j$ and after relabeling of the vertices of G one has $G = G(P_n)$.

Herzog and Hibi proved in [1, Theorem 3.4] that a bipartite graph G is Cohen-Macaulay if and only if G comes from a poset.

We denote by $M(G)$ the set of all minimal vertex covers of G.

Let L_n be the Boolean lattice on the set $\{p_1, p_2, \ldots, p_n\}$. We consider the subset:

$L_\alpha = \{\alpha \subset \{p_1, p_2, \ldots, p_n\} \mid (\exists) C \in M(G): p_i \in \alpha \iff x_i \in C \subseteq L_n\}$.

A subset \(\alpha \subseteq P_n \) is called a post ideal of \(P_n \) if for every \(a \in \alpha \) and \(b \in P_n, b \leq a \) implies \(b \in \alpha \). We denote by \(I(P_n) \) the set of all poset ideals of \(P_n \). If \(\alpha, \beta \in I(P_n) \), then \(\alpha \cap \beta \in P_n \) and \(\alpha \cup \beta \in P_n \), hence, \(I(P_n) \) is a lattice ordered by inclusion. Moreover, \(I(P_n) \) is a distributive lattice.

Herzog, Hibi and Ohsugi proved in [2] that there is a one-to-one correspondence between the set \(M(G) \) of all minimal vertex covers of \(G \) and the distributive lattice \(I(P_n) \) of all poset ideals of \(P_n \).

Our aim in this paper is to give an implemented algorithm for computing the distributive lattice associated to a Cohen-Macaulay bipartite graph and, consequently, the set of all minimal vertex covers of a Cohen-Macaulay bipartite graph.

2. THE DISTRIBUTIVE LATTICE ASSOCIATED TO A COHEN-MACAULEY BIPARTITE GRAPH AND THE MINIMAL VERTEX COVERS OF A COHEN-MACAULEY BIPARTITE GRAPH

In this section we focus mainly from the computational point of view on the set of all minimal vertex covers of a Cohen-Macaulay bipartite graph, a particular case of an unmixed bipartite graph, for computing the set of all minimal vertex covers of a Cohen-Macaulay bipartite graph.

Proposition 2.1. [4] Let \(P_n = \{p_1, p_2, \ldots, p_n\} \), \(n \geq 2 \), be a poset such that \(p_i \leq p_j \) implies \(i \leq j \) and let \(G_n = G(P_n) \) be the graph on \(V_n \) that comes from the poset \(P_n \). Let \(G_{n-1} \) be the subgraph of \(G_n \) induced by the subset \(V_{n-1} = V_n \setminus \{x_n, y_n\} \). Then a subset \(C_n \subseteq V_n \) is a minimal vertex cover of \(G_n \) if and only if either \(C_n = C_{n-1} \cup \{y_n\} \), where \(C_{n-1} \subseteq V_{n-1} \) is a minimal vertex cover of \(G_{n-1} \) or \(C_n = C_{n-1} \cup \{x_n\} \), where \(C_{n-1} \subseteq V_{n-1} \) is a minimal vertex cover of \(G_{n-1} \) such that \(x_i \in C_{n-1} \), for each \(i \in \{n-1\} \) with \(p_i < p_j \).

As an application of the Proposition 2.1, we can recover a result on the lattice associated to a Cohen-Macaulay bipartite graph ([2, Lemma 2.1]).

Corollary 2.2. [2,4] Let \(G_n = G(P_n) \), where \(P_n = \{p_1, p_2, \ldots, p_n\} \) is a poset such that \(p_i \leq p_j \) implies \(i \leq j \). Then \(L_{G_n} = I(P_n) \).

Next we present our algorithm that was given in [4] for computing the distributive lattice \(I(P_n) \) and, consequently, the set \(M(G) \) of all minimal vertex covers of \(G \), where \(G \) is a bipartite graph that comes from a poset \(P_n = \{p_1, p_2, \ldots, p_n\} \) such that \(p_i \leq p_j \) implies \(i \leq j \).

Algorithm 2.3. [4] The algorithm, based on recursion, computes the lattice \(I(P_k) \), for all \(k \in [n] \), where \(P_k \) is the subposet of \(P_n \) induced by the subset \(\{p_1, p_2, \ldots, p_k\} \). It starts with \(I(P_1) = \{\emptyset, \{p_1\}\} \). At each step \(k \), \(2 \leq k \leq n \), let us assume that the lattice \(I(P_{k-1}) \) has already been computed. We consider the set \(I_k = \{p_j \mid p_j < p_k, 1 \leq j \leq k - 1\} \). By the Proposition 2.1 and the Corollary 2.2, \(I(P_k) = I(P_{k-1}) \cup I_k \), where \(I_k = \{\alpha \cup \{p_k\} \mid \alpha \in I(P_{k-1}), L(p_k) \subseteq \alpha\} \).

In the final part of the algorithm we compute all minimal vertex covers \(C_\alpha \) of \(G \) by the corresponding poset ideal \(\alpha \) of \(P_n \).

Input: a poset \(P_n = \{p_1, p_2, \ldots, p_n\} \) such that \(p_i \leq p_j \) implies \(i \leq j \)

Output: the lattice \(I \) of all poset ideals of \(P_n \) and the set \(M \) of all minimal vertex covers of \(G(P_n) \)
\[I = \{\emptyset, \{p_1\}\} \quad \text{(Initially,} \quad I(P_1) = \{\emptyset, \{p_1\}\} \}\]

for \(k = 2, n \) do
\[L = \emptyset \quad \text{\{We compute the set} \quad L(p_k) = \{p_j \mid p_j < p_k, 1 \leq j \leq k - 1\} \}\]

for \(j = 1, k - 1 \) do
if \(p_j < p_k \) then
\[L = L \cup \{p_j\} \]
end if
end for

\[I' = \emptyset \quad \text{\{We compute the set} \quad I'_k = \{\alpha \cup \{p_k\} \mid \alpha \in I(P_{k-1}), L(p_k) \subseteq \alpha\} \}\]

for all \(\alpha \in I \) do
if \(L \subseteq \alpha \) then
\[I' = I' \cup \{\alpha \cup \{p_k\}\} \]
end if
end for

\[I = I \cup I' \quad \text{\{We compute the lattice} \quad I(P_k) = I(P_{k-1}) \cup I'_k \}\]
end for

\[M = \emptyset \quad \text{\{We compute the set} \quad M \text{ by the lattice} \quad I ; \text{ initially,} \quad M = \emptyset \}\]

for all \(\alpha \in I \) do
\[C = \emptyset \quad \text{\{We compute} \quad C_\alpha = \{x_j \mid p_j \in \alpha\} \cup \{y_j \mid p_j \in \alpha\} \}\]

for \(j = 1, n \) do
if \(p_j \in \alpha \) then
\[C = C \cup \{x_j\} \]
else
\[C = C \cup \{y_j\} \]
end if
end for

\[M = M \cup \{C\} \quad \text{\{Each time we get a minimal vertex cover} \quad C_\alpha , \text{ we add it to} \quad M \}\]
end for

We give an implementation of the previous algorithm in Turbo Pascal Version 7.0.

```pascal
program Lattice_associated_to_a_Cohen_Macaulay_bipartite_graph;
uses Crt;

type
  vector = array[1..100] of integer;
  relation = array[1..100, 1..100] of integer;
  m_int = set of 0..10;

var
  i,j,k,l,m,n: integer;
  level: vector;
  R: relation;
  ML: m_int;
  IP: array[1..10, 1..1024] of m_int;
begin
  ClrScr;
  writeln('Introduce the cardinality of the poset')
```

47
write('n=');readln(n);
writeln(n);
for i:=1 to n do
 for j:=1 to n do
 begin
 if i=j then R[i,j]:=1
 else R[i,j]:=0;
 end;
writeln('introduce the number of the relations of type p[i]<p[j] implies i<j');
write('m=');readln(m);
writeln('introduce the relations of type p[i]<p[j] implies i<j');
for k:=1 to m do
 begin
 write('i=');readln(i);
 write('j=');readln(j);writeln;
 R[i,j]:=1;
 end;
writeln('Write all the relations of the poset);
for i:=1 to n do writeln('p[',i,']=p[',i,']');
for i:=1 to n-1 do
 begin
 for j:=i+1 to n do
 if R[i,j]=1 then writeln('p[',i,']=p[',j,']');
 end;
k:=1;
l:=1;
IP[k,l]=[];
l:=l+1;
IP[k,l]=[1];
level[k]:=l;
if n>1 then
 begin
 repeat
 k:=k+1;
 level[k]:=level[k-1];
 for l:=1 to level[k] do IP[k,l]:=IP[k-1,l];
 ML:=[];
 for j:=1 to level[k-1] do
 if R[j,k]=1 then ML:=ML+[j];
 for l:=1 to level[k-1] do
 if ML<=IP[k-1,l] then
 begin
 IP[k,level[k]+1]:=IP[k-1,l]+[k];
 level[k]:=level[k]+1;
 end;
 until k=n;
 end;
for t:=1 to level[n] do
 begin
 write('Poset ideal ','t,':');
 if IP[n,t]=[] then writeln('empty set')
 else
 begin
 for i:=1 to n dp
 end;
if I in IP[n,t] then write('p[',i,','] ');writeln;
end;
end;
readln;
writeln;
for t:=1 to level[n] do
 begin
 write('Minimal vertex cover number ',t,':');
 if IP[n,t]=[] then
 for i:=1 to n do write('y[',i,','] ')
 else
 begin
 for i:=1 to n do
 if i in IP[n,t] then write('x[',i,','] ')
 else write('y[',i,','] ');
 end;
 writeln;
 end;
end.

Example 2.4. Let $P_4 = \{p_1, p_2, p_3, p_4\}$ be the poset with $p_1 \leq p_2$, $p_1 \leq p_4$ and $p_2 \leq p_3$. The Hasse diagram of P_4 is represented in the next figure:

![Hasse diagram](image_url)

Let $G = G(P_4)$ be the bipartite graph that comes from the poset P_4. The graph is represented geometrically in the next figure:
By using the program based on the Algorithm 2.3, we get the distributive lattice associated to the graph \(G \):
\[
I(P_3) = \{\emptyset, \{p_1\}, \{p_1, p_2\}, \{p_1, p_2, p_3\}, \{p_1, p_2, p_4\}, \{p_1, p_2, p_3, p_4\}\}.
\]
The Hasse diagram of the poset \((I(P_3), \subseteq)\) is depicted in the next figure:

Finally, we get the set \(M(G) \) of all minimal vertex covers of the graph \(G \):
\[
M(G) = \{\{y_1, y_2, y_3, y_4\}, \{x_1, x_2, y_3, y_4\}, \{x_1, x_2, x_3, y_4\}, \{x_1, x_2, x_3, y_3\}, \{x_1, x_2, y_3, y_4\}, \{x_1, x_2, y_2, y_3\}, \{x_1, x_2, y_2, y_4\}, \{x_1, x_2, x_3, y_4\}\}.
\]
References