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Abstract

The paper provides a general method for obtaining the so-called “shape functions”, which approximate the
solution of systems of differential equations with boundary conditions. Unlike classic methods usually used for
solving variational problems, the presented procedure approximates the unknown functions with piecewise linear
functions, using a sequence of C++ code. The domain in which the system is defined is divided into finite
elements, and the nodal values of the solution are obtained by solving the Fermat system associated with the
specific boundary conditions of the defined domain. The proposed algorithm, based on C++ code, is designed to
solve problems in two-dimensional cases or higher.
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1. INTRODUCTION

The finite element method (FEM-in short) is the most widely used approximation method ([3])
in numerical approximation methods for variational problems. The present paper provides an example
of applying FEM, using C++ code, as opposed to the traditional MatLab or MathCAD programs ([4]).

In practice, the associated physical phenomena are diverse:

1. heat propagation

2. spreading the electric (or magnetic) potential

3. fluid movement through porous media

4. bending of the prismatic plate

We will work within a Q < R? bounded domain, with a smooth border 6Q along certain
portions. Let’s consider, in this mathematical context, the ’quasi-harmonic” equation that represents the
behavior of an undetermined quantity Vv, in two dimensions:

o, v, 0, ov
=k, &)+5(ky 5)+ f=0,(xYy)eQ (1)

The constants kx, ky, the function f, and also the boundary conditions are given. The
approximate solution of the equation is required. In some cases, extreme conditions are also added :

kxﬂlx+kyﬂly+b+av:0;(x,y)eaﬂ (2)
OX oy
with:
dv ov ov
— =k, —1, +k,—I;n=(LI,);(x, oQ 3
i = R g hin =l ity e ©
which represents the derivative along the direction n, together with the Newmann condition:
av =0,(x,y) e oQ
dn
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or the Dirichlet condition:
v="f(=0);(x,y)eoQ

For two real functions u,v e C*'(Q), the scalar product was defined ([1]):

<UV>= ”(uv+Vu - Vv )dxdy 4)

1/2

which induces the norm [Jul| =< u,u >*"%. We have denoted by H*(€2), the Hilbert space obtained by

completing C*(QQ) , in relation to this norm. The space of infinitely differentiable functions C, (),
with the compact support contained in Q2 , with respect to the norm || -||, led to another closed subspace
Ho(@Q) c H'(Q) . Let’s consider the Hilbert space X, which verifies the relation:

Ho(Q) = X < H'(Q). A quadratic function | : X — Rwas defined, with the variable v(X,y) as
follows:

1, (v v
I(v)=g > kx(&j +ky(5j — fv idxdy (5)

where: K = K(x,y) is assumed to be a continuous, positive function, not depending on Vv, and
f = f(X,y) isagiven continuous function.

According to Euler’s classical theory, the variation problem requires the determination of a function
U e X that achieves the minimumof | on X, i.e.

I(u)<I(v),vveX. (6)
2. FEM PRESENTATION -THE LINEAR APPROXIMATION METHOD

As it is known in the specialized literature, FEM approximates the unknown function with
smooth functions on every element of the domain, so it results in the linear “shape functions”, each finite
element having associated only one single linear function.

The simplest example of a finite element in a two-dimensional case is the triangle, because the
linear function in two dimensions has three coefficients that are determined by the conditions placed on
the peaks of the triangle. Rectangular finite elements or, more generally, curve finite elements can also
be used, with minor adaptations to improve domain coverage. It is required that some sides of the finite
elements align with the domain’s border 0Q ([4]).

It is assumed that (2 can be divided into a finite number M of triangles, such that the
intersection of any two triangles is either empty, or has a common peak, or a common side.

For example, our purpose was to solve problem (6) using the finite element method, in the two
dimensional case of an octagonal domain, and represent the solutions.

The linear approximation functions, on each element of the unknown function have the form
u(x, y) = A+ Bx + Cy, in which A,B,C are obtained using Cramer method, from a simple linear system:

u; =u(x;,y; ) = A+ Bx +Cy;
u; =u(x;,y; )= A+Bx; +Cy, @)
u, =ux,,y,)=A+Bx, +Cy,

We did some notations, as follows:
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q =X Y, = Xa Y8 = XY = XY an = XY XY 1 X
bi :yj ~—Yn :yjm;bj =Yn Y :ymi;bm :yi_yj :yij; 1 Xj yj =2Aijm=A (8)
Ci =X, =Xy =XjmiCj =Xy =X, =XpiiCr =X —X; =X; L Xn Yy

jm? mi !

Solving system (7), with the notations we have made, we have obtained:

1 1
A=——(au. +au. +a u )=—— a.u.
ZA ( i 177 m m) 2Aijm (z i |)

ijm

1 1
B=_—(bu, +bu; +byu;) :ﬂ(zbiui) )

ijm

2A,

ijm

C= L(ciui +CU; +Culy,) = L(Zciui)
2Aijm

which, by replacing in the system (7), leads to:
1
2Aijm
So, to write these functions, called “shape functions”, we need the values of the unknown
function in the network nodes, namely u, , k=1, ..,M, with M being the number of all finite elements in
which we have decided to divide the domain. Therefore, the network has 3M nodes, if the finite element
is a triangle, 4M nodes, if it is a square, and so on. Also, the coordinates of the network nodes (X, ,Y, )

u D ui(a +bx+cy) (10)

must be known, and also the area of one finite element, noted Aijm. Using the standard notations, the
so-called ’nodal values” of the domain QO were defined:

l"Ii
{u¥F=|u; | N, :i(ai +bx+¢y); N, :L(aj +b;x+c.y); N, :L(am +b,x+c,Y)
2Aijm 2Aijm 2 ijm
um
As a consequence, the approximate solution can also be written in the standard form of the scalar
product between the vector {u}® and the matrix [n] =[N;,N;,N]:

u:[NUNj’Nm]'{u}e:ZNi'ui (11)

We used the addition property of the integral in conjunction with the decomposition of the
domain into finite elements, obtaining a real function with M real variables u, , where k =1, ..,M, and
M represents the number of triangles and polygon vertices. With the domain decomposed into triangles
Aijm, the function U is uniquely and continuously defined across the domain, with the help of the

so-called “nodal values”. A node is a common peak/vertex shared by several finite elements, allowing

e

several elements to be linked within the expression. Since the finite element is, in this case, a

i
triangle, each element contributes to only three of the differentials. The quadratic functional 1(u) can
be minimized with respect to these values:

al _(arc a° ac
au ou; ‘ou; ‘ou,

For one finite element aria, we have denoted the integral 1°, and considering k, = ky =1, the

following formula is obtained:
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. ON . _ ON .
e:lJ'I[(aN'ui+ ‘uj+al\|mum)2+(al\I : Juj+al\|mum)2+fu]dxdy (12)
X oy oy oy

The partial derivative, with respect to the u, component, has to the general form:

O R

and can be explicitly written on its components:

O oN, . ~ON, .
—:H[(aN'ui iy N um)aN' +(8N' Ui +—U, + N um)éN' + f a—u]dxdy:

X ox oy oy oy oy -
= [(bu;+b,u +b,u, )b, +(cius+c,u +c,u,) ]”dxdy+—” a, +bx+cydxdy=  (14)

ijm |Jm e

A
=o;U; +a;u; +o,Uy +—
We have denoted, for simplicity, the new coefficients a.;,B;,v;, like so:

1
.=—b2+c ——bb+cc =—— (b b +c_c.) and similarly:
a; 4A( )0 2 ( i )00 2 (b,b; +c,.c)) y

ijm ijm

1 P P
B —K(bibj +CiC; ) By = s (b} +ci)ifn = v —(b,b; +c,c;) (15

ijm ijm ijm

1 1 1
=——(bb.+cc )y, =——((b.b +c.c_ )y =—(b?+c?
Y (bib, +cic, )5y; Yy (b;b, +c¢;C )iV Y (bn +c5)

ijm ijm ijm

In equations (12), we specified a particular notation for the last term of the integral, and also calculated
its corresponding value; X,y were the notations that represent the coordinates of the triangle’s centre of
gravity.

F=f.u=F°=u° :L”(ai+bix+ciy)dxdy: Al (a +bx+c v);

um

ijm e ijm
)—(:xi+xj+xm;)—/: Yi+ Y+ Yo
3 3

We also mention the relation: J'J' dxdy = 2Aijm = A, which has been used in the transformations
e

we have maid in equations (14).
For minimization, all the partial derivatives of the function must be null, forming a system in the
unknowns U;:

o _ ..
% Z M (16)

where 1° is the integral of a finite element, and the sum was calculated after all the finite elements.
Accordingly, the Fermat system is:
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o :Za.u.+§:0,i:1,...,M (17)

Following the formula (10), the approximate solution is the sum of the linear functions multiplied with
each peak’s value U, , for every element:

M2 (a +bXx+c.y)u,
U=-—= Z +(ak+l +bk+1X+Ck+1y)uk+1 1k = 1,M -2 (]_8)

k=1
+ (A, B X+ C Y U,

3. CODIFICATION OF THE METHOD

For translating the procedure we have described, in the C++ code, that we need the coordinates
of the triangles peaks in the entry file. The values are calculated in relation to the center of the octagon.

& P Q

I E.

wi{1.0,0.00 M(0.,0,1.0) C(1.7,1. T
M{0.0,1.0) ¥io.0,2.4) €(1.7,1.7
H(0.0,2.4) F(1.0,5.4) C[1.7,1.7
Bil.0,%.4) Q(2.4,.5.4) €(1.7,1.7
ji¥1 QIZ.4,3.4) BL3.4,2.4) S(1.7,1.7)
B(3.4,2. 4] 2(3.4,1.0) €(1.7,1.7
Z(3.4,1.0) Ti:.£0.0) C(1.7,1.7
Tlz2.4,0,00 W(1.0,0.0) C[1.7,1.7

A=12
.

Fig.1. Applying FEM for a two dimensional domain

The numerical value of the finite element aria was calculated in the particular case of the octagon
presented in figure 1:
7

2
20+ 4.5
SB :ACVT = 2 = 2 :1,2,M :8, (19)

or:VTzlgzﬁ;igzgctg%:S,g:%

52 g Ly m 2414

=1,207=1,21
2 8 2

The auxiliary coefficients are calculated as follows:

b=y, - Y, =-07:c, =X, =%, ==17; o, =b/+¢’=(-07)*+(-17)*=0.7
b,=y, -y, =17;¢,=%-%=07; a,=bb +c,c, =~(17)(0.7)-(-0.7)(-1.7)=-2.38 (20)
by =y, -y, =-1ic,=x,-x, =1 o, =byb, +¢,c,=07-17=-1

Consequently, for the first aria element, AVMC, we have obtained:

|
aav_mc :%[3.38-% ~2.38u,—U,]+0.4=0.7u, -05-u, —0.21-u, +0.4 =0 (21)
u, :
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System (14) can also be written, with matrices coefficients, as follows:

o o ||y 1
aal(u) B B, Bl lu, §1 ~[H][u]+F* =[o] (22)
I Yi YJ Ym um 1

which led to the associated Fermat system:

0.7 - v1-0.5 - u2-0.21 - u3+0 - u4+0 - u5+0 - u6+0 - u7+0 - u8+0.4=0

-0.5-ul+0.7 - u2-0.21 - u3+0 - u4+0 - u5+0 - u6+0 - u7+0 - u8+0.4=0

—0.21 -u1-0.21 -u2+0.42 -u3+0 -u4+0 -u5+0 -u6+0 -u7+0 -u8+0.4=0
ul+0-u2+0-u3+07-u4-05-u5-02-u6+0-u7+0-u8+0.4=0
- ul+0 - u2+0 - u3-0.5 - u4+0.7 - u5+-0.2 - u6+0 - u7+0 - u8+0.4=0
- ul+0 - u2+0 - u3-0.2 - u4-0.2 - u5+0.41 - u6+0 - u7+0 - u8+0.4=0
~ul+0-u2+0-u3+0-u4+0-u5+0-u6+0.7-u7-05-u8+04=0
~ul+0-u2+0-u3+0-u4+0-u5+0-u6—-05-u7+0.7-u8+04=0

[oNeNoNoNe]

solved using the eliminations method, and the solutions we have obtained are the following:
2.9,17,192,291,1.7,1.96,1.94,1.14
It results inan approximate solution to the problem, with linear functions as components:

U=[0+(-0.7)*x+(-1.7)*y]*(2.9)+
[-1.7+(L.7)*x+(0.7)*y]*(L1.7)+
[1+(-1)*x+(1)*y]*(1.92)+
[0+(0.7)*x+(-1.7)*y]*(2.91)+
[1.7+(0.7)*x+(L.7)*y]*(L.7)+
[0+(-1.4)*x+(0)*y]*(1.96)+
[0+(L.7)*x+(-0.7)*y]*(1.94)+
[4.08+(-0.7)*x+(L.7)*y]*(1.14)

4. THE PSEUDO CODE AND THE PROGRAM SOURCE CODE

The code sequences in C++ calculate the nodal values of the solution, where n represents the
number of nodes, as well as the coefficients of the linear functions, and display the resulting
approximate solution. The source code uses the following notations : U, v are vectors of the network

nodes coordinates provided in the input file, the variables e,c,d represent the linear coefficients a,
used to calculate the elements of the matrix h, and the variable b represents the free term A/3.The
solution to the Fermat system of equations is represented by the variable X.

A repetitive cycle, conditioned at the beginning, reported to the number of nodes, reads, from
the input file f , the nodes coordinates for every finite element, calculates the linear coefficients a,,

and the elements o; of the matrix h, using the formulas in equations (20). The pseudo code of this
sequence is presented below:
k< 1; while(k<n) do begin
Uk,Vk; Uk+1,Vk+1; Uk+2,Vk+2 < f
€k € Uk+1-Vi+2-Uk+2- Vi1 Ek+1 € Uk+2-Vi-Uk-Vk+2; €k+2 € Uk-Vit1-Uk+1-VK;
Ck € Vi+1-Vk+2;, d=Uk+1-Uk+2;
Ck+1 € Vi+2-VK; Ok+1€ Uk+2-Uk;
Ck+2 € Vk-Vik+1, Ok+2€ Uk-Uk+1;
hick € CiZ+0k?; Nicke1€-CieCis1+0ic- Ok Nicks2 € Cie-Cieaz+ic-Oice2;
N1k € Ce1-ChH0ie1-0i; N1 ke 1 € Cra1?+0ke1%; Nice 1 k2 € Cert -Ciar 2Ot -2

N2,k € Cis2-ChH0ie2-Ok; N2 k+1 € Crz-Cr1+0ke2-Oir1; Nicro k2 € Cs2’+ w2’
k&<k+3
end while
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Next code sequences were meant to solve the Fermat system, using the specific method of
eliminations, with the following associated pseudo code:

i=n; while (hii=0) do begin

i1<i-1; p<i;
end while
Xp < bp/ hpp;
for i=p-1, i>=1, i<i-1 do begin
temp <b;

for j=i+1, j<=p, j<j+1 do begin

temp <temp-hij-x;
end do

if hii <>0 then xi<temp/hii end if

end do

The source code for the the octagonal domain example is found below, in accordance with the

theoretical results we have outlined:

typedef float matrix[100][100];

void main()

{ matrix h; float b[100],c[100],d[100],
€[100],x[100],u[100],v[100];

int p,i j,k,I,n,vb;float aux,temp;

fstream f("DATEL.in",ios::in),
g("DATE2.out",ios::out);

n=8;

for(i=1;i<=n;i++){for(j=1;j<=n;j++)
h[i][1=x[i]=c[i]=d[i]=0;}
for(i=1;i<=n;i++)b[i]=2*(1.2)/3;//f=1

p=1; while(p<n){
f>>u[p]>>v[p]>>u[p+1]>>v[p+1]>>u[p+2]>>
v[p+2];

e[p]=ulp+1]*v[p+2]-u[p+2]*v[p+1];
e[p+1]=u[p+2]*v[p]-u[p]*v[p+2];
e[p+2]=u[p]*v[p+1]-u[p+1]*v[p];
c[p]=v[p+1]-v[p+2]; c[p+1]=v[p+2]-v[p];
c[p+2]=v[p]-v[p+1];

d[p]=u[p+1]-u[p+2]; d[p+1]=u[p+2]-u[p];
d[p+2]=u[p]-u[p+1];
h[p][p]=pow(c[p],2)+pow(d[p],2);
h[p][p+1]=c[p]*c[p+1]+d[p]*d[p+1];
h[p]l[p+2]=c[p]*c[p+2]+d[p]*d[p+2];
h[p+1][p]= c[p+1]*c[p]+d[p+1]*d[p];
h[p+1][p+1]=pow(c[p+1],2)+pow(d[p+1],2);
h[p+1][p+2]=c[p+1]*c[p+2]+d[p+1]*d[p+2];h
[p+2][p]=c[p+2]*c[p]+d[p+2]*d[p];
h[p+2][p+1]=c[p+2]*c[p+1]+d[p+2]*d[p+1];
h[p+2][p+2]=pow(c[p+2],2)+pow(d[p+2],2);
p+:3;}

ENTRY FILE

for(i=1;i<=n;i++)for(j=1;j<=n;j++)
h[i]01/=(2*1.2);
g<<"matrix H elements:"<<endl;
for(i=1;i<=n;i++){ g<<endl;
for(j=1;j<=n;j++) g<<h[i][j]<<" " ;}
/[The solution's values are calculated using the
elimination method
i=n;while(h[i][i]==0)i--;p=i;
X[p]=b[p}/h[p][pl;
for(i=p-1;i>=1;i--){ temp=Dbli];
for(j=i+1;j<=p;j++) temp-=h[i][j]*x[I;
if (h[i][i]'=0) x[i]=temp/h[i][i];}
g<<endl; g<<" Fermat system"<<endl;
for(i=1;i<=p;i++){for(j=1;j<=p;j++)
if (j'=1)g<<"+"<<h[i][jJ<<"*Vv"<<j;else
g<<h[i][j]<<"*v"<<]; g<<"=0"<<endl;}
g<<endl;g<<"Fermat system solutions:"
<<endl; for(k=1;k<=p;k++) g<<x[k]<<"";
g<<endl<<"The linear functions:"<<endl;
for(k=1;k<=p;k++){
g<<"["<<e[K]<<"+("<<c[K]<<")*x+("<<d[Kk]<
<"*Fy1*(U<<x[k]<<")"<<endl;}
0<<"The solution with linear functions as
components:"<<endl;
for(k=1;k<p;k++){
o<<"["<<e[K]<<"+("<<c[K]<<")*x+("<<d[Kk]<
<"PrYIH('<<x[K]<<")+"<<endl;}
o<<"["<<e[p]<<"+("<<c[p]<<")*x+("<<d[p]<
<"Y*yI*("<<x[p]<<")"<<endl;

f.close(); g.close();}

EXITFILE

FERMAT SYSTEM

1.00.0 0.01.0 1.71.7
0.01.0 0.024 1.71.7
00241034 1717
1034 2434 1717

0.7*V1-0.5*V2+-0.21*V3+0*V4+0*V5+0*V6+0*V7+0*V8=0
-0.5*V1+0.7*V2+-0.21*V3+0*V4+0*V5+0*V6+0*V7+0*V8=0
-0.21*V1-.21*V2+0.42*V3+0*V4+0*V5+0*V6+0*V7+0*V8=0
0*V1+0*V2+0*V3+0.7*V4+-0.5*V5+-0.2*V6+0*V7+0*V8=0
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2434 3424 1717 0*V1+0*V2+0*V3+-0.5*V4+0.7*V5+-0.2*V6+0*V7+0*V8=0
3424 3410 1717 0*V1+0*V2+0*V3+-0.2*V4-0.2*V5+0.41*V6+0*V7+0*V8=0
3410 2400 1717 0*V1+0*V2+0*V3+0*V4+0*V5+0*V6+0.7*V7+-0.5*V8=0
2400 1000 1.71.7 0*V1+0*V2+0*V3+0*V4+0*V5+0*V6+-0.5*V7+0.7*V8=0

FERMAT SYSTEM SOLUTIONS: [1+(-1)*X+(1)*Y]*(1.92)+
291.71922911.71.961.941.14 [0-+(0.7)*X+(-1.7)*Y]*(2.91)+
[1.7+(0.7)*X+(1.7)*Y]*(L.7)+
THE SOLUTION WITH LINEAR [0+(-1.4)*X+(0)*Y]*(1.96)+
FUNCTIONS AS COMPONENTS: [0+(L.7)*X+(-0.7)*Y]*(1.94)+
[0+(-0.7)*X+(-1.7)*Y]*(2.9)+ [4.08+(-0.7)*X+(L.7)*Y]*(L.14)

[-1.7+(L.7)*X+(0.7)*Y]*(L.7)+

THE APPROXIMATE SOLUTION: 5.38x-4.5y+6.57=0

5. RESULTS AND DISCUSSION

For the graphical visualization of the solution, the ordinates of the points have to be calculated
with the aid of the linear “shape functions” formulas and the initial coordinate values.

Table 1. Listed values for the domain peaks ordinates

X | yformulas | Y« values

1] 1 y=-0.4x 04

2 0 y=-2.4x+2.4 24

3 0 y=x-1 -1

4 1 y=0.4x 0.4

5 2.4 y=-0.4x-1 -2.2

6 3.4 x=0 0

7 3.4 y=2.4X 8.16

8 2.4 y=0.4x-2.4 -1.44

For the graphical visualization of the linear components, using the new positions of the eight
peaks based on the new/updated ordinate values, we have used the following sequence of code( in
graphical mode):

u[1]=1;u[2]=0; u[3]=0; u[4]=1;u[5]=2.4; u[6]=3.4; u[7]=3.4; u[8]=2.4; v[1]=-0.4*u[1]; v[2]=-2.4*u[2]
+2.4; v[3]=u[3]-1; v[4]=0.4*u[4]; v[5]=-0.4*u[5]-1; v[6]=0; v[7]=2.4*u[7]; Vv[8]=0.4*u[8]-2.4;

i=1;

while(i<8) { line(getmaxx()/4+40*u[i],getmaxy()/2-20*Vv[i],
getmaxx()/4+40*u[i+1],getmaxy()/2-20*v[i+1]);i++;}
line(getmaxx()/4+40*u[1],getmaxy()/2-20*v[1], getmaxx()/4+40*u[8],getmaxy()/2-20*Vv[8]);

char s[10]; setcolor(8);

k=1;outtextxy(getmaxx()/4,2*getmaxy()/3,"Graphic of the shape functions");

while(k<8){ setcolor(4); circle(getmaxx()/4+40*u[k],getmaxy()/2-20*v[K],2); setcolor(8); itoa(k,s,10);
outtextxy(getmaxx()/4+40*u[Kk]+5,getmaxy()/2-20*v[K],s); k++; }

The result was the graphical representation in Figure 2a), the two-dimensional C++ graphical
image of the solution components. In Figure 2b), a similar graphical representation was displayed,
obtained using MS Excel tool, with the same values. The similarity between both forms can be seen/is
obvious. They are not identical, due to the reference sets: according to the algorithm C++ code, the
reference set consists of the first coordinates of the octagon nodes in two-dimensional space, as they
were located in the domain; for the same purpose, MS Excel used a different scale and the reference set
of eight equally spaced points is displayed along the horizontal axis, ordered relative to the origin.
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Fig.2. Visualization of the linear solution components-the “shape functions”

CONCLUSIONS

1. The application to n-dimensional problems will follow the same procedure (so it can be
applied in the same way for both planar and spatial problems). For three-dimensional problems, the
algorithm will use three dimensional matrices.

2. Boundary conditions are included in the discrete problem.

3. The piecewise approximation polynomials are chosen so that they are uniquely determined
by the nodes of the finite element network.

If the number of the finite elements increases, the approximate solution becomes more accurate.
The number M of finite elements was obtained by dividing the total area of the region by the area of one
element.

4. The C++ code does not depend on the dimension of the domain, though a regular shape,
decomposable into triangles as finite elements, is suitable/ideal/fit. The coordinates are included in the
entry file of the program.
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