

THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI

FASCICLE IX. METALLURGY AND MATERIALS SCIENCE

No. 2 - 2015, ISSN 1453 – 083X

DUAL PRIORITY SCHEDULING ALGORITHM USED IN THE nMPRA

MICROCONTROLLERS – DYNAMIC SCHEDULER

Lucian ANDRIEȘ, Vasile Gheorghiță GĂITAN
Faculty of Electrical Engineering and Computer Science

“Ștefan cel Mare” University of Suceava

Suceava, Romania

e-mail: andries.lucian2002ro@gmail.com, gaitan@eed.usv.ro

ABSTRACT

This paper is a follow up of an already published paper that described the

static scheduler. It deals with a true dynamic scheduling algorithm that is meant to

maximize the CPU utilization. The dual priority algorithm is composed of two

different scheduling algorithms, earliest deadline first (EDF) and round robin (RR).

We have chosen EDF, because it is a dynamic scheduling algorithm, used in real

time operating systems, which can be easily implemented in hardware, by

improving the nHSE architecture. The new dynamic scheduler algorithm provides a

much better CPU utilization, very good switching time for tasks and events within 5

to 8 machine cycles and guarantees that no task will suffer from starvation.

KEYWORDS: real time system, dynamic hardware scheduler,

microcontroller, pipeline processor

1. Introduction

In article [1], the author provides a review of the

fundamental results of two important scheduling

algorithms:

 Fixed priority (FP - Fixed priority

scheduling assumes that the processor will execute

the highest priority task among others).

 Earliest deadline first (EDF - Earliest

deadline first scheduler is a real time operating

system that places processes in a priority queue in

order to be scheduled for execution).

The FP algorithm will be assigned a fixed

priority that cannot be modified at run time or in the

normal operations to each task, while the EDF

algorithm is the opposite. Each priority of a task is

continuously computed based on the earliest absolute

deadline.

Other scheduling algorithms such as Shortest

Remaining Processing timer First (SRPT) [2] and

Least Laxity first (LLF) [3] are very powerful and

efficient in software, but are difficult to implement in

hardware because of the logical ports cost. For this

reason we are going to explain in detail only the EDF

algorithm.

The scheduling algorithms based on FP and

EDF, to a certain extent, are good algorithms that can

be used in real time operating systems. But in the

majority of the commercial real time operating

systems, the FP algorithm is implemented due to the

simplicity and lower overhead of resources.

The overheads are more visible in software,

because EDF can be implemented in different ways

that can deal with more or less resources. Each

software implementation can lead to more or less

CPU utilization.

The hardware resources that are going to be

used are not going to increase drastically by EDF,

because the Scheduler described in [4] will not be

changed at all and the nHSE architecture, described in

[6-9], will undergo minor improvements.

The nHSE architecture, described in [8], can

support two types of schedulers, namely static or

dynamic. So far only the static scheduler has been

described and implemented in paper [4], while the

dynamic scheduler has been postponed for future

implementations.

This paper will present only the theoretical part

behind the actual hardware implementation [4]. Based

on our experience with the static scheduler, we are

convinced that the scheduler will work as intended

and the resource utilization will not be much higher.

This paper is organized as follows. The

improvements of the nHSE architecture is presented

in Section III, the proposed dynamic dual priority

algorithm is presented in Section III, followed by the

results in Section IV. In the end, in Section V, some

conclusions are listed.

- 66 -

THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI

FASCICLE IX. METALLURGY AND MATERIALS SCIENCE

No. 2 - 2015, ISSN 1453 – 083X

Banked
register file

0 1 2

n-11

n

Instruction
read

Data and instruction
memory

IFID

0 1 2

n-1
1

n

0 1 2

n-1
1

n

ALU

0 1 2

n-1
1

n

Data read

Data and instruction
memory

IDEX EXMEM MEMWB

0 1 2

n-1
1

n

Forward unit 1Forward unit 1

nHSE

Hazard Detection
Unit

Datapath Control

PC

PC
PC

PC
0

1
2

n-1

Inhibit

Buss
Controller

Master0

M
u

lt
ip

le
xe

r/
D

em
u

lt
ip

le
xe

r
B

u
ss

Scheduler

Slave0 Arbiter

Fig. 1. The nMPRA architecture

2. nMPRA architecture overview

This paper starts with an overview of the

nMPRA architecture. In Figure 1, the initial nMRPA

architecture [8] is described, while the representations

colored in red are the improvements described in [4].

To the current nMPRA architecture [8], was

added a slow bus with a Buss Controller and a

peripheral (Scheduler) which contained the

scheduling algorithm (Figure 1).

This new approach optimizes the switching of

the hardware tasks in terms of silicon costs and

system complexity. During this process, we encounter

some synchronization issues, caused by the current

architecture of the processor, MIPS with 5 pipeline

stages. In order to stop a working task, the Program

Counter (PC) must be stopped. The switch process of

a task is really simple and is done in two steps.

 Stop the PC from its current task.

 Select the appropriate task to share the

resources.

From this description, we can think that the

switching of a task can be done in 1 machine cycle,

because the stopping of the PC and the selection of

the appropriate input / output of the multiplexer /

demultiplexer can be done simultaneously.

It could be true if there were no dependencies

with the RAM and ALU that were shared. So when

the SelectTask[2..0] bus (Figure 2) will have a

different value, in order to select the new task, the

ROM, ALU and ALU will no longer be available for

the current task.

M
U

X
/D

E
M

U
X

PC ROM

RAM

ALU
SelectTask[2..0]

Fig. 2. Simplified nMPRA architecture

We have chosen to wait during 3 machine cycles

to solve the synchronization issue. The other 2

machine cycles are used to synchronize the next task

program counter address with the ROM memory and

the instruction fetch pipeline register because the

Scheduler and the program counter use 3 quadrature

clock signals.

The whole architecture was designed using

VHDL hardware description language (VHDL 93).

- 67 -

THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI

FASCICLE IX. METALLURGY AND MATERIALS SCIENCE

No. 2 - 2015, ISSN 1453 – 083X

Altium Designer 2014 was used, only as a text editor,

to include the individual VHDL module and to create

the architecture. The design created was simulated

using ModelSim Altera Started Edition 10.1d. The

only stimuli applied to the microcontroller was 3

quadrature clock signals, while the ROM memory

was already initialized with the machine code for all 5

tasks.

The following results were observed, in normal

operation, at key points. In the following lines we are

going to detail the steps required to do a task switch:

a) var_process0ready ((1) in Figure 3) signal

represents the event occurring after the activation of

the first task. Because no jump instruction is

performed, all of the active tasks will be stopped with

the help of processXstall (X will have values from 0

to 4) signal. The process1ready will remain active as

a sign that the task is still active. At this moment

task1 will be in the ITQ.

b) Wait one clock cycle.

c) Processactiv signal selects thread 0 as the

active one (3) in Figure 3).

 Process0resetstall and process0startagain

signals are activated ((4) in Figure 3).

Fig. 3. Time for a task switch

== 0

Registers

cr0D1
cr0D2

mrWDEVi
mrTEVi

Counter Registers

cr0D1_cnt
cr0D2_cnt

mrWDEVi_cnt
mrTEVi_cnt

== 0

== 0

== 0

nHSE_lr
crTRi

enTi
enWDi
enD1i
enD2i
enInti

enMutexi
enSyni

run_sCPUi

Registers

mrCntRuni
mrCntAvgRuni

mrCntSleepi

+ >>1

+

+

Fig. 4. Local nHSE registers

As we can see in Figure 3 the response time of

the scheduler is one machine cycle (between (2) and

(5)), the time spent after the task with higher priority

becomes active and the starting of the executing code

(between (2) and (5) in Figure 3) is done in 5 machine

cycles in an interval of 75 ns, where the period of the

clock is 15 ns.

3. nHSE Arhitecture Improvements

The architecture of the microcontroller that

includes the nMPRA and nHSE architecture firstly

described in [8] and then improved in [4] will be

improved again in order for the nHSE architecture to

make use of the dynamic scheduler.

nMRA architecture stands for n Multi Pipeline

Register architecture which means that the most

important resources, ROM, RAM, ALU, were shared

between multiple hardware tasks.

nHSE architecture stands for “n Hardware

Scheduler Engine” and can be used for real time

preemptive capabilities of the static and of the

dynamic scheduler. It also provides support for:

 Logic events:

o Interruptions.

o Events generated by watchdog timers.

o Events generated by the timer.

- 68 -

THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI

FASCICLE IX. METALLURGY AND MATERIALS SCIENCE

No. 2 - 2015, ISSN 1453 – 083X

o Events generated by the deadline1 timer.

o Events generated by the deadline2 timer.

o Events generated by mutexes.

o Events generated by synchronization

events.

 Static Scheduler: The priorities of n tasks

cannot be changed during execution.

 Dynamic Scheduler: The priorities of n tasks

can be changed during execution.

 Global and local nHSE registers.

In order to support dynamic scheduling, the

nHSE architecture was updated with a new register

mrCntAvgRuni, added to the local nHSE registers

(Figure 4) for all hardware tasks. The registers will

always be equal to the average of the current task

execution time. The register mrCntRuni will start to

count each machine cycle only after the task has

started again. At the end of the task execution the

nHSE_lr will add the current value from mrCntRuni

to mrCntAvgRun register and shift to the right result,

in order to achieve a division by two. The final result

will be stored in mrCntAvgRun.

In the following example, we are going to detail

the operation performed by nHSE_lr in Table 1:

Table 1. Average task computation for EDF algorithm

Step mrCntRuni Operation mrCntAvgRuni

1

mrCntAvgRuni =

(mrCntRuni + rCntAvgRuni);

mrCntAvgRuni =>> 1;

0

2 500 (500 + 0) >>1 250

3 700 (700 + 250) >>1 475

4 450 (450 + 475) >>1 462

5 900 (900 + 462) >>1 681

6 1000 (1000 + 681) >>1 840

7 1200 (1200 + 840) >>1 1020

8 300 (300 + 1020) >>1 660

As it can be easily seen, the average algorithm

has started with the value of the register

mrCntAvgRuni equal to 0. If we compute again the

same task execution, but this time with floating point,

the result will be approximately the same: an

arithmetic average will be performed on the number

of the processor cycles of the register mrCntAvgRuni

from Table 1. The result is (500 + 700 + 450 + 900 +

1000 + 1200 + 200) / 7 = 721.4285714285714

machine cycles.

The difference between the unsigned average

and the floating point average is just 61 machine

cycles, which can be equal to 12 R type assembler

instructions if we consider that an R type instruction

is executed in 5 machine cycles.

From the examples above, we can say that the

computation error for the unsigned average algorithm

is 8.46% which is deducted with the following

equation: 100% - (660 * 100) / 721 = 100% -

91.539% = 8.46%

The result 8.46 % indicates the maximum

percentage that the unsigned average algorithm can

have. The value of the error will decrease as the

number of task recurrence increases.

The costs of hardware resources, per hardware

task, for a true dynamic dual priority algorithm, are:

 One register of 32 bits.

 An add module;

 A shift to the right by one module.

4. The proposed dynamic dual priority

algorithm

This paper is a follow up of the article [4],

whose overview is presented in chapter II, where the

presented dual priority scheduling algorithm was not

a true dynamic scheduler because the dynamic

execution of the algorithm was that the priority of the

tasks was changed only when one or several tasks did

not meet the Round Robin timer (RRB) time

constraints.

The algorithm will behave like a true static

scheduler only when the following requirements are

met:

 The RRB time constrains are met.

 The sum of all concrete task executions is

less than the lowest task recurrence.

 No task is going to be promoted to extend

the execution tasks class (LTQ).

The main difference between the scheduling

algorithm described in article [4] and the algorithm

presented in this paper is the use of a true dynamic

scheduling algorithm, namely earliest deadline first

scheduling (EDF).

In this paper the switching time has not been

improved since the last article [4], because we are

presenting the other half of the Scheduler. In order to

have a better understanding of the algorithm, we are

- 69 -

THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI

FASCICLE IX. METALLURGY AND MATERIALS SCIENCE

No. 2 - 2015, ISSN 1453 – 083X

going to reuse and detail some of the information

from [4].

Dispacher

Round Robin Scheduling

Tsk 1

...

Tsk 2 Tsk n

EDF Scheduling

Tsk 1 Tsk 2 Tsk 1

LTQ not
empty

Tasks promoted to long tasks

Idle State

If another Task
became active

ITQ

Tsk 1
Tsk 2

...

Tsk n

No

LTQ

Tsk 1
Tsk 2

...

Tsk n

Running State

If Task x is running

If another Task
became active

If the Task has a
least CPU
utilization

Yes

Move Task x
into ITQ

Yes

If another Task
became active

No

If TBR elapsed

No

Move Task x
into LTQ

YesNo

If Task finish
successfully

Move Task x
into ATQ

Yes

Yes

No

No

No

Yes

ITQ not
empty

Tasks promoted to Interrupted state

Yes

Yes

No

No

Yes

Start

 Initialization stage of:
- Timer (TRB) used for the Round Robin time stamp

- Active tasks queue(ATQ) a
- Interrupt tasks queue(ITQ) a
- Long time task queue(LTQ) a

EMTQ

Tsk 1
Tsk 2

...

Tsk n

Extract task with the
least CPU

utilization(from
EMTQ)

Extract task with the
least CPU

utilization(from EMTQ)

Registers

...
mrCntMedRuni

Registers

...
mrCntMedRuni

Registers

...
mrCntMedRuni

Registers

...
mrCntMedRuni

nHSE_lr

Registers

...
mrCntMedRuni

4

0...

Fig. 5. The flowchart of a scheduler with a

dynamic dual priority algorithm (Figure 3 from

[4])

In the following lines, the classes that each task

can belong to are presented:

 The class of execution medium time queue,

which has the highest priority (the tasks will

be inserted by the medium execution time

(EMTQ)), will schedule the tasks, based on

medium execution time, only in the Running

State (RS) of the Scheduler.

 The class of interrupted tasks, which has the

second priority (the tasks will be inserted

only in the interrupted task queue (ITQ)),

will schedule the tasks, based on priorities,

only in the Idle State (IS) of the Scheduler.

 The long execution tasks class (these tasks

significantly exceed the base period T

corresponding to the priority task), which

has the least priorities (the tasks will be

inserted only in the long task queue (LTQ)),

will schedule the tasks, based on ROUND

ROBIN (RR) algorithm, only in the Idle

State (IS) of the Scheduler.

A global timer, Round Robin timer (TRB), is

used to verify if the active time of the current task is

not taking too long. If the TRB expires, the current

task will be promoted to LTQ and will be scheduled

based on RR algorithm.

The TRB must be initialized with the occurrence

of the slowest task from the system or less. In Figure

5 is presented the operational flowchart of the

dynamic Scheduler (event driven), which is driven by

the main clock signal of the processor.

The operation of the Scheduler is exactly the

same as in paper [4] whose overview is presented in

chapter II, with the main difference that the EDF

algorithm will guarantee a better control process unit

(CPU) utilization.

5. Conclusions

The current paper presented the true dynamic

dual priority algorithm which is the other part of the

nHSE architecture, which uses the EDF algorithm for

better CPU utilization.

The EDF algorithm will not be efficient in the

following cases:

 The execution time of each task is greater

than the TRB. In this particular case, only

the RR algorithm will be used.

 The execution time of all tasks is less than

the time recurrence of the fastest task. This

precondition must be achieved in a system

where the CPU load is normal.

The EDF algorithm will be efficient by

scheduling the tasks whose execution is more likely

to be over before another task becomes active, only

when the CPU load rises above normal utilization.

The algorithm, shown in Figure 5, will ensure a

constant of 5 machine cycles for each switch task and

the guaranties that the tasks will be scheduled no

matter how difficult the requirements of the system

have been.

Acknowledgement

This paper was supported by the project

"Sustainable performance in doctoral and post-

doctoral research PERFORM - Contract no.

POSDRU/159/1.5/S/138963", project co-funded from

European Social Fund through Sectorial Operational

Program Human Resources 2007-2013.

References

[1]. Robert I. Davis, A review of fixed priority and EDF
scheduling for hard real-time uniprocessor systems, Real-Time

- 70 -

THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI

FASCICLE IX. METALLURGY AND MATERIALS SCIENCE

No. 2 - 2015, ISSN 1453 – 083X

Systems Research Group, Department of Compuyter Science,

University of York, York, UK.
[2]. Davis R. I., Burns A., Walker W., Guaranteeing Timing

Constraints Under Shortest Remaining Processing Time

Scheduling. In proceedings of the Euromicro Workshop on Real -
Time Systems, p. 88-93, 1997.

[3]. Shaohua Teng, Wei Zhang, Haibin Zhu, Xiufen Fu, Jiangyi

Su, Baoliang Cui, A Least-Laxity-First Scheduling Algorithm of
Variable Time Slice for Periodic Tasks, International Journal of

Software Science and Computational Intelligence, Vol. 2, Issue 2,

April 2010.
[4]. Lucian Andries, Vasile Gheorghita Gaitan, Dual Priority

Scheduling algorithm used in the nMPRA Microcontrollers, 18th

International Conference on System Theory, Control and
Computing, Sinaia, Romania, October 17-19, 2015.

[5]. Lucian Andries, Vasile Gheorghita Gaitan, Detailed

Microcontroller Architecture based on a Hardware Scheduler

Engine and Independent Pipeline Registers, 19th International

Conference on System Theory, Control and Computing, Sinaia,

Romania, October 17-19, 2014, ISBN 978-1-4799-4602-0, 2014.

[6]. Dodiu E., Gaitan V. G., Custom designed CPU architecture

based on a hardware scheduler and independent pipeline registers
– concept and theory of operation, IEEE EIT International

Conference on Electro-Information Technology, Indianapolis, IN,

USA, 6-8 May 2012.
[7]. Dodiu E., Gaitan V. G., Graur A., Custom designed CPU

architecture based on a hardware scheduler and independent

pipeline registers – architecture description, IEEE 35th Jubilee
International Convention on Information and Communication

Technology, Electronics and Microelectronics, Croatia, May 2012.

[8]. Gaitan V. G., Gaitan N. C., Ungurean I., CPU Arhitecture
based on a Hardware Scheduler and Independent Pipeline

Registers, IEEE Transactions on VLSI System, 2014, ISSN :1063-

8210.
[9]. Gaitan N., Lucian A., Using Dual Priority Scheduling to

Improve the Resource Utilization in the nMPRA Microcontrollers,

IEEE 12th International Conference on Development and

Application Systems, Suceava, Romania, May 15-17, 2014.

- 71 -

