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ABSTRACT

In the world of real time operating systems, task switching, communication
between threads and synchronization are implemented in sofiware. Some of the
mechanisms used may introduce big latencies in task recurrence, task jitter. This
kind of problem, which is sporadic, may lead to system failure for safety-critical
areas. This issue may occur in the real time systems that have really fast response
time as requirements. For this particular example, the tasks are succeeding very

fast, resulting in a lot of overhead because of the time spent in task switch. Our

research has led us to the conclusion that a microcontroller architecture, based on
a static hardware Scheduler and independent Pipeline Registers, will be capable of
executing multiple tasks with approximately no delay between every task switch (5
machine cycles). The nMPRA (n Multi-Purpose Register Architecture) architecture,
which consists of 2 sets of registers: local such as coprocessor 2 and global such as
a peripheral on the slow bus, offers support for preemptive real time operating
systems. Both architectures, nMPRA and nHSE (n Hardware Scheduler Engine),
complement each other and take the real time operating system programming to a

whole new level.

KEYWORDS: real time system, static hardware scheduler, microcontroller,

pipeline processor

1. Introduction

The real time properties of an embedded system
lie in the implementation of the operating system,
task synchronization and communication between
threads. The RTOS (real time operating systems),
used, in a real fast system must be small, in order to
have less overhead caused by the operating system for
a fast code execution.

Currently, the real time operating system from
the safety critical areas will not use a small operating
system because a powerful microcontroller can be
chosen in order to supplement the power needed for
event serving. In article [1] a CPU architecture is
described (central processing unit), that provides
hardware support for real time systems and very good
related work. This new architecture is composed of 2
different architectures:

nMPRA (multiple pipeline registers architecture
for n tasks): provides support for hardware
synchronization between tasks and peripherals.

nHSE (hardware scheduler engine for n tasks):
provides support for static and dynamic hardware
scheduler for n tasks.

The combined architectures contribute to
monitor resources and very fast events and they
interrupt handling.

In [2] a MIPS processor was implemented in
order to be modified for the new architecture. The
MIPS architecture did not provide support for
Coprocessor0 (COPO) or all the instructions that a
MIPS32 processor can support. The only supported
programming language was an assembler language,
which was parsed by a tool chain written by us.

In article [1] the author points out that the
Scheduler and the nHSE architecture can be included
into a coprocessor or into the on-die implementation.
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The scheduler was implemented in the second manner
while the nHSE architecture was implemented as a
Coprocessor 2 (COP2) for the MIPS32 architecture.

First, in order to implement the Coprocessor 2, it
was necessary to meet the following requirements:

A very tested functional MIPS32 architecture.

Support for coprocessor.

Support for a gec (a compiler system produced
by the GNU Project supporting various programming
languages) tool chain and a high level programming
language, which was considered as the most
important part.

The project [3] which was thoroughly tested was
used as a baseline for the new architecture. The
project was created by Grant Ayers and funded by the
eXtensible Utah Multicore (XUM) project at the
University of Utah between 2010-2012.

The details of the classical 5-stage pipeline
MIPS32 Release 1 architecture are:

e Harvard  architecture

instruction and data ports.

e Full forwarding and hazard detection

e MIPS32 instruction set, including:

o Atomic load linked.
o Atomic store conditional.
o Unaligned load and store.
e Complete Coprocessor 0 that allows ISA-
compliant interrupts exceptions and user /
kernel modes.
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2. Detailed architecture of the
microcontroller

The main differences between the processor
located at [2] and the one implemented in [3] are the
presence of the COP 0, support for all MIPS32
instructions, including the assembler instructions for
COP 0 and the use of only one clock signal for the
entire processor.

The MIPS32 Release 1 architecture is a project
developed in Verilog using the Ide Xilinx ISE Design
Suite 14.2, which was modified in order to support
the architecture described in [1]. A multiplexer /
demultimexer was introduced to manage the
resources RAM, ROM, ALU, Control and
Coprocessor 0, which are shared between the 5
threads and the static dual priority Scheduler (Figure
D).

The MIPS32 architecture is special because it
left room for further implementations of new
hardware modules. The MIPS32 architecture defines
4 coprocessors [4]:

e Coprocessor 0 (COPO0): already implemented
and supporting exceptions and virtual
memory system.

e Coprocessor 1 (COP1): reserved for floating
point custom implementation.

e Coprocessor 2 (COP2): available for user
defined implementation.

e Coprocessor 3 (COP3): reserved for floating
point module in Release 1 implementation of
the MIPS64 architecture and for all Release
2 implementations of the architecture.
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Fig. 1. Controller with nHSE and nMPRA architecture
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The gce tool chain also provides support for low
level and high level programing language for the
processor and assures us that we can use the 4
coprocessor in our implementation. The nHSE and
nMPRA architecture will be tested using gec, which
is a widely used tool chain. In this way, we can create
a benchmark between the old processor and the new
architecture, using the same tool chain and
programing language.

The nMPRA architecture was implemented to
be COP2 compliant in order to benefit from the gcc
tool chain. In Figure 1 is described, at a macro level,
the cohesion between the nMPRA and nHSE
architecture. SCPUO (semi processor 0) will
configure the Scheduler, which is a part of nHSE, to
supervise the correct execution of the hardware tasks,
because it has the highest priority and is the only
hardware task that is allowed to configure the
hardware Scheduler.

The nMPRA architecture contains:

e independent pipeline registers.

e a multiplexer and demultiplexer that share
the resources that were not multiplicity.

e Local registers wused for inter
synchronization.

The custom microcontroller can run 5 different
tasks (5 SCPUi) independently without the need of
the nMPRA architecture. In this manner, the system
can be considered as equivalent to the microcontroller
with RTOS.

The nHSE architecture complements the
nMPRA by adding an important part of an RTOS
event, interrupts handling and inter task
communication.

As described in article [1], the internal
organization of the logic is divided into 2 different
segments:

e The local segment consists of local registers
that are visible only in the SCPUi (nHSE_Ir
in Figure 1) and are located after the pipeline
register Instruction Decode (ID). In this
particular case, the access time to registers
from nHSE_Ir will be of 2 machine cycles
because one machine cycle will be used to
extract the instruction from ROM memory

task

and the other machine cycle to decode and
execute the COP2 instruction.

e The global segment consists of global
registers from the external bus (nHSE gr in
Figure 1). In this case, the access time will
be of 5 machine cycles for our architecture
because 4 steps will be driven through the
pipeline registers until Memory Access (M)
is reached and 1 machine cycle will be used
to write or read from the nHSE gr
peripheral.

As a consequence of this architecture, the access
to the local segment is faster than the access to the
global segment.

The interaction between the static Scheduler and
the nHSE resources is very tight, therefore the
algorithm of the Scheduler, detailed in [2], was
improved in order to support the most powerful
instruction, wait (detailed in [1]). The nHSE Ir
(Figure 2 a)) module will use TaskNeedReset wire to
signal the Scheduler that the SCPUi must be reset
because the watch-dog (register mrDEVi detailed in
Chapter 1V) has expired, and TaskDeepSleep to
signal the Scheduler that the task is not blocked, but
is only waiting for an external or internal event, in
order not to be promoted to long task queue (LTQ in
[2D.

In order to have a better understanding of the
Scheduler function, detailed in [2] and modified in
Figure 3, we are going to repeat some relevant
information.

Each SCPUi can belong to one of the following
classes:

The class of active tasks (AQ) that are
scheduled based on priorities in the Running State
(RS) of the Scheduler.

The class of interrupted tasks (JTQ) that are
scheduled based in priorities, only in the Idle State
(IS) of the Scheduler.

The class of long execution tasks (LTQ) that are
scheduled based on a Round Robin (RR) algorithm
only in the Idle State (IS) of the Scheduler.

The wait instruction allows for the
synchronization with several events that are located
into the crTRi (Table 1) and crEVi registers, without
the need of the software intervention.

Table 1. crTRi (Control registers)

0..0 Ir run sCPUi Ir_enSyni Ir_enMutexi Ir_enInti Ir_enD2i Ir enDI1i Ir enWDi Ir_enTi
™w ™w ™w ™w ™w ™w ™ ™
Ir_enTi: validates/inhibit generated timer event. Ir enWDi: validates / inhibits the events

generated by the watchdog.
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Ir_enDl1i: validates / inhibits the events Ir_enMutexi: validates / inhibits the events
generated by deadline 1. generated by mutex.
Ir_enD2i: wvalidates / inhibits the events Ir_enSyni: validates / inhibits the events
generated by deadline 2. generated by timing events.
Ir_enlnti: validates / inhibits the events Ir_run_sCPUi: validates / inhibits the program
generated by interrupts. execution SCPU.
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Fig. 2. nHSE Ir and nHSE_gr internal architecture
Table 2. crEVi (Events Register)
3l.. 7 6 5 4 3 2 1 0
Ir_ run sCPUi SynEvi MutexEvi | IntEvi D2EVi DIEVi WDEvi TEvi
™w ™ ™w ™w ™w ™w ™w ™

TEvi: the event generated by the timer has
occurred.

Ir_enWDi: the event generated by the watchdog
has occurred.

Ir_enDli: the event generated by deadline 1 has
occurred.

Ir_enD2i: the event generated by deadline 2 has
occurred.

Ir_enlnti: the event generated by interrupts has
occurred.

Ir_enMutexi: the event generated by the mutex
has occurred.

Ir_enSyni: the event generated by timing events
has occurred.

Ir_run_sCPUi: the copy of the bit Ir_run_sCPUi
from register crTRi.

The current assembler instruction, which is
decoded by nmHSE Ir (Figure 2, a)) module, is
relatively unique because one atomic instruction will

stop the current SCPUi from execution, equivalent
with entering a low power mode, and will alert the
Scheduler not to promote the current task to LTQ
through the wire TaskDeepSleep (Figure 2).

The static scheduler algorithm, reused from [2],
modified and detailed in Figure 3, supports a self-
sustaining state (Waiting State from Figure 3) that
my last as long as the task needs it. This feature
assures us that the current modified architecture is not
rigid; on the contrary, we could say that it can support
a large number of tasks.

The Scheduler is incorporated into nHSE gr
(Figure 1) because it must have access to the global
events, presented in Chapter IV, in order to stop the
active SCPUi and schedule the right SCPUi to serve
the event or just schedule the correct SCPUi.

The number of registers that are used for inter
task synchronization, such as mutex or message
passing, must be standardized in order to serve all the
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tasks. For example, the minimum number of registers
for mutexes (grMutexi) and message passing
(grERFi) must be equal to the number of tasks to the
power of two. This allows us to use a mutex or send a
message from one to all the others.
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Fig. 3. The flowchart of the scheduler with a
dual priority algorithm

3. Local events

The internal architecture of nHSE_Ir block is
described in Figure 2, a).

Watch dog timer(mrWDEVi)

If the watchdog is configured and the timer
expires, the SCPUi will be reset. The timer of the
watch dog will be reset each time the task has ended
successfully.

Alarms(mrDI1EVi, mrD2EVi)

Each SCPUi has 2 alarms that will signal, via
Ir_enDIi and Ir_enD2i, that the configured time has
passed. The alarms may be used to find out how long
the execution of the code lasted.

Every time the task begins again to execute the
code, the local registers (Figure 2, a)) mrTEVi_cnt,
mrWDEVi_cnt, crOD1 _cnt and crOD2_cnt will be
initialized with the values defined in the related
registers. After the initialization process, the registers
will start decrementing the defined values. When the
counters are equal to 0, a flag will be set and further
action will be taken, depending on each register
functionality.

Timers(mrTEVi)

Can be used as a general purpose timer to wait
for an event or just for synchronization with other
tasks or events. The wait instruction can be used to
generate a fixed recurrence of a task when an input is
scanned periodically. Thus, the processor will
consume less power.

4. Global events

The internal architecture of nHSE_gr block is
described in Figure 2 b).

Mutexes

Table 3. grMutexi (task ID for interrupt attached register)

TaskID31 TaskID4

TaskID3

TaskID2 | TaskID1 | TaskIDO

Mutexi 0 ™ ™w

™w ™w ™w

TaskID = the task id that acquired the mutex.

Mutexi = 1 means the mutex is taken.

Acquire / release a mutex (Table 3): The
operation is atomic (write to nHSE_gr) because the
data path of the processor is not used. Instead it is
used a specific asm instruction from COP2 (Figure 2
a)) (mtc2). The nHSE Ir is going to decode the
instruction and write the relevant data to nHSE gr to

acquire the mutex. A mutex can be released only by
the task that acquired it.

Read the status of a mutex: the operation uses
the data path of the SCPUi, because the MIPS
architecture can perform only operations based on
registers. Therefore, a value from RAM or peripheral
must be stored in one of the 32 registers from SCPUi
in order to be used in computation.
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Fig. 4. Scheduling waveform of 5 hardware tasks (capture from Xilinx ISE Simulator)

Interrupts

Table 4. grINT 1di (Task ID for interrupt attach

The register grINT IDi selects the id of the
SCPUi that will execute the interrupt routine code
(Table 4). A simple explanation is that a SCPU4 can

register) only execute the interrupt service routine of a GPIO
(General Purpose Input Output) pin while the SCPU3
31 ‘ 30..3 2 | 0 can only execute the interrupt service routine of an
Taskld2 | Taskid1 | Taskld0 exception from the communication peripheral.
0 0 ™ ™w ™w Events
Table 5. grERFi (event global register)
0/1 sIDnj-1 . sIDO dIDnj-1 . dIDO mess . mess0
event Source task id Destination source task message
™w ™w | | ™w | | ™w ™w | | ™w

Event = 1 means the event is active.

The task will be awakened by the Scheduler
when the wait assembler instruction is used and a
message is received. The data path of the SCPUi will
be used to access data from the register (Table 5).

5. Simulation

In Figure 4 (1) is visible the PC (Program
Counter) of each SCPUi (Modules\Curentlnstr), that
whenever is changing the current of the PC, the line
will be changed. By looking at this pattern we can see
that the hardware tasks are scheduled periodically at
the same recurrence.
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In Figure 4 (2) the SCPU2 hardware task
(Modules\CurentlInstr\Thread2\Q) does not respect
the pattern because it is executing more codes, for the
first time, than the other SCPUi. The code for all
SCPUi was written in this manner on purpose, to
show that the hardware tasks are scheduled regularly
at the same recurrence. In Figure 4 (3), the hardware
signals are used to perform a task switch of a SCPUI.
A more detailed explanation about the task switch is
provided in [2]. The current response time of the
nHSE architecture, using Verilog simulation is the
following:

nHSE Ir — 1 machine cycle for internal
handling, where the atomic instructions are executed
in 2 machine cycles. One machine cycle to extract the
instruction and another machine cycle to execute de
instruction.

nHSE gr —
handling.

Scheduler — 1 machine cycle to schedule a task
(response time) and 5 machine cycles to perform a
task switch. The process of a task switch is described
in [2].

The above response time is obtained using
simulation and can be different from the case where
the design is synthetized, because it depends on the
developer that is designing the RTL (register-transfer
level).

The current proposed solution is completely
simulated using ISE Design Suite 14.2 and ISE
Simulator, proving that the functionality, proposed in
[1], is working and can be implemented in hardware.
A problem that must be handled in the future is that
different authors have made some significant
improvements, such as improved response to
interruptions [5, 6] and events [7, 8]. Therefore, the
nHSE features must be extended and new registers
for configuration must be added.

1 machine cycle for internal

6. Conclusions

In this paper we presented a possible
implementation of the nHSE architecture as a MIPS
coprocessor, Coprocessor2 (COP2). We outline, for
the first time, the nHSE registers and some of their
functionalities for the local registers (coprocessor 2)
and global registers (such as the peripheral on the
slow bus).

The solution has the great advantage of being
able to take advantage of all gcc tool chain support,
that can use a high level programming language to
generate machine code for the modified MIPS
processor architecture, was considered the most
important part.

This new architecture has a response time for
the nMPRA architecture of 3 machine cycles for the
local registers (nHSE _Ir), 1 machine cycle for global
registers (nHSE_gr) and 6 machine cycles for the
Scheduler in order to respond and make a task switch.

The solution has been implemented using
Verilog, as a hardware description language, and ISE
Simulator for simulation purpose.

We can say that the overall response time of this
architecture is less than the execution of a load
instruction.
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