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ABSTRACT 
 

A cellular automaton is a decentralized computing model providing a 
platform for performing complex computation with the help of only local 
information. The cellular automata method describes the evolution of a discrete 
system of variables by applying a set of deterministic (or probabilistic) rules that 
depend on the values of the variables as well as those in the nearby cells of a 
regular lattice. In this paper we present some types of cellular automata used for 
modelling and simulating recrystallization process. 
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1. Introduction 

 
A cellular automaton is a discrete dynamical 

system that consists of a regular network of finite 
state automata, named cells, which change their states 
depending on the states of their neighbors, according 
to a local update rule. All cells change their state 
simultaneously, using the same update rule. The 
process is repeated at discrete time steps. Cellular 
automata are discrete in both space and time, 
homogeneous in space and time, and local in their 
interactions. Cellular automata can have arbitrary 
dimensions. Space is defined on a regular array of 
cells that can be regarded as the nodes of a finite 
difference field. The state of each cell is characterized 
in terms of a set of generalized state variables. The 
actual values of these state variables are defined at 
each of the individual cell. The opening state of the 
automaton is defined by mapping the initial 
distribution of the values of the chosen state variables 
onto the cells in the network. The dynamic evolution 
of the automaton takes place through the application 
of deterministic (or probabilistic) transformation rules 
that act on the state of each cell. These rules 
determine the state of a cell as a function of its 
previous state and the state of the neighbours of the 
cell. Cellular automata work in discrete time steps. 
After each time interval, the values of the state 
variables are updated for all cells simultaneously, 
mapping the new values assigned to them through the 
transformation rule. Cellular automata were 
introduced by von Neumann and Ulam for the 
simulation of self-reproducing Turing automata and 

population evolution. In the last years, cellular 
automata have been used to simulate the 
microstructure evolution in materials science. In this 
domain a number of different aspects were addressed, 
namely, primary static recrystallization (Hesselbarth 
and Gobel, [2]; Pezzee and Dunand [3]; Marx and 
Raabe [4]). Although cellular automaton simulations 
are typically carried out at an elementary level 
(atoms, clusters of atoms, dislocation segments, 
subgrains), it should be emphasized that particularly 
those variants that discretize and map in a continuum 
space are not intrinsically calibrated by a 
characteristic physical length or time scale. This 
means that a cellular automaton simulation of 
continuum systems requires the definition of 
elementary units and transformation rules that 
adequately reflect the system behaviour at the level 
addressed.      

 
2. Basic definitions and notations 
 
Let d be a positive integer. We consider Zd a d-

dimensional cellular space, whose elements are called 
cells. Let S be a finite set of elements, called states. A 
configuration is a function c: Zd →S that assigns a 
state to each cell. A d-dimensional neighbourhood 
vector, of size m, is a t-uple N= (z1,z2,…,zm), where 
each ∈iz Zd, and  zi≠zj for all i≠j. The elements zi 
specify the relative locations of the neighbours of 
each cell. A rule (local rule) is a function f: Sm→S, 
that specifies the new state of each cell based on the 
old states of its neighbours. If the neighbours of a cell 
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have states s1,s2,…,sm, then the new state of the cell is 
f(s1,s2,…,sm). In cellular automata all cells use the 
same rule, and the rule is applied at all cells 
simultaneously.  

To specify a cellular automaton one needs to 
specify the following items: 

• the dimension d, 
• the finite state set S, 
• the neighbourhood vector N= (z1, z2 … , zm), 

and 
• the local rule  f:Sm→S. 
Formally, we define the corresponding cellular 

automaton to be the 4-uple A=(d,S,N,f). 
Let N= (z1, z2 …, zm) be a d-dimensional 

neighbourhood vector. For any cell dZz∈ , we 
denote ),,,()( 21 mzzzzzzzN +++= K , and 

for any dZK ∈ , we denote  
{ }miKzzzKN i ,,2,1,)( K=∈+= , that is 

N(z) is the ordered sequence of the neighbours of cell 
z, while N(K) is the unordered set of neighbours of 
cells in K. In the two-dimensional space, the von 
Neumann- and the Moore- neighbourhoods are often 
used. In the von Neumann configuration, 
N=(z1,z2,z3,z4), z1=(-1,0), z2=(0,-1), z3=(0,1), z4=(1,0), 
while in the Moore configuration, N=(z1,z2,z3,z4, 
z5,z6,z7,z8), z1=(-1,-1), z2=(-1,0), z3=(-1,1), z4=(0,-1), 
z5=(0,1), z6=(1,-1), z7=(1,0), z8=(1,1) (Fig. 1). 

 

 
Fig. 1. The (a) von Neumann and (b) Moore 

neighbors of the c cell 
 

The local interaction of neighbouring sites in a 
cellular automaton is specified through a set of 
deterministic or stochastic transformation rules. The 
value of an arbitrary state variable s assigned to a 
particular site at a time t (t=t0+Δt) is determined by its 
present state (t0) or its last few states (t0, t0-Δt, etc.) 
and the state of its neighbors. For example, in a one-
dimensional cellular automaton case, considering the 
last two time steps for the evolution of the cellular 
automaton, we can write formally 
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where 0t
js  indicates the value of the variable at 

a time t0 at the node j.  

The positions j+1 and j-1 indicate the nodes in 
the immediate neighborhood of position j.  

The function f specifies the set of 
transformation rules, such as provided by standard 
finite difference algorithms. Due to the discretization 
of space, the type of neighboring affects the local 
transformation rates. In the case of a higher-
dimensional cellular automaton simulation, with 
independent variables described by rectangular 
coordinates, the predictions become dependent on the 
shape of cells. In the two-dimensional case, with von 
Neuman configuration, we have x(i,j)=f(x(i-1,j),x(i,j-
1),x(i,j+1),x(i+1,j)), while with the Moore 
configuration, we have  x(i,j)=f(x(i-1,j-1),x(i-1,j),x(i-
1,j+1), x(i,j-1),x(i,j+1) x(i+1,j-1),,x(i+1,j), 
x(i+1,j+1)).  

Transforming these somewhat abstract rules and 
properties associated with general automata into a 
materials-related simulation concept consists in 
mapping the values of relevant state variables onto 
the cells of a cellular automaton grid which reflects 
the independent spatial coordinates, and using the 
approximate local finite difference solutions of the 
underlying partial differential equations of the model 
addressed as local transformation rules. 

For the Moore configuration, which allows one 
to introduce a certain medium-range interaction 
among the sites, the equation of the state can be 
writen as: 
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         The state of a cellular automaton is completely 
specified by the transformation rules and by the 
values of the state variables at each site. Even for 
very simple automata there exists an enormous 
variety of possible transformation rules. For a one-
dimensional binary cellular automaton with von 
Neumann neighboring, each node must assume one of 
two possible states, sj=0 or sj=1.  From the state 
equation 
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 we can define 28 possible deterministic or 

probabilistic transformation rules f.  
One of them is 
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In general, the number of rules can be 
calculated by |S|m. 

The general algorithm of a cellular automaton 
has the form: 

Input data: 
iT – number of iteration allowed to perform 

when computing the solution 
C – number of initial configurations used for 

rule evaluation 
 
Initialization: 
a) For each cell i { 
1. initialize rule table of cell i; 
2. si=0;} 
b) count=0; initial configuration counter 
Iteration: 
while not done do: 
c) generate a random initial configuration 
d) run the algorithm on initial configuration for 

iT iteration;  
e) for each cell i 
1. if  cell i is in the final state then 

si=si+1 
f) c=c+1 
g) if c (mod C)=0 then     
for each cell i 
1. compute nsi(c)  (number of 

neighbors) 
2. if nsi(c)=0 then don’t change the 

rule of cell i 
3. else if nsi(c)=1 then replace the rule 

of cell i with the corresponding neighboring rule. 
4. else if nsi(c)=2 then replace the rule 

of cell i with the crossover of the two corresponding 
neighboring rules. 

5. else if nsi(c)>2 then replace the rule 
of the cell i with the crossover of the two randomly 
chosen neighboring rules. 

6. si=0. 
  

3. Cellular automata in recrystallization 
process 

 
Transforming  the abstract rules of a cellular 

automaton into a materials-related concept consists of 
mapping the values of relevant state variables onto 
the points of the cellular automaton and using the 
local finite difference formulations of the partial 
differential equations of the underlying model as local 
transformation rule. The particular versatility of the 
cellular automatom approach for the simulation of 
recrystallization process is due to its flexibility in 
considering a large variety of state variables and 
transformation laws. Cellular automaton simulations 
are carried out at an elementary level using atoms, 
cluster of atoms, small crystalline elements as 
underlying units. To model the recrystallization 
process, the most used was the two-dimensional 
cellular automata. As neighbors model (related as 
local environment), was used the von Neuman 
environment and the Moore environment (Fig. 1). 

In [2] it is presented a straightforward 
application of cellular automata to recrystalization. It 
is focused on capturing three phenomena: 

h) nucleation of grains 
i) growth of grains 
j) the slowing of growth owing to the 

impingement of grains. 
The model used contains: 
1. the geometry of the cells: a two-dimensional 

square network of cells, 
2. the number and the kind of states a cell can 

possess: two states per site, recrystallized or not 
recrystallized,  

3. the definition of the neighborhood of a cell: 
von Neuman and Moore (Figure 1.), 

4. the rules that determine the state of each cell 
in the next time step: rules for nucleation of new 
grains, growth of grains, and the impingement of 
grains. 

The initial configuration is with all sites set to 
zero (all cells correspond to no recrystallized state), 
and a number Ni of „embryos” were placed in system 
by assigning non-zero values to randomly selected 
nodes on the network. The strategy is to assign to 
each embryo a label to identify the grain that arose 
from that embryo. The rule to describe growth: if A≥1 
at time step t, then the central site would be 
considered recrystallized at time step t+1 and take on 
the identity of the grain that extends into its 
neighborhood. Here, A is defined as the sum of 
recristallized neghbors of the central node, based on 
the selected neighborhood. At each time step, the 
creation of another set of Ni embryos is attempted.  
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The Nd cells are chosen at random and if a cell 
was not recrystallized, an is created an embryo, with a 
sequential number. Thus all growing grains have their 
own unique identification number.      

 
4. Conclusions 

 
We have presented a general model for cellular 

automata, and a general automaton algorithm. The 
implementation of this algorithm depends on the 
dimension of the network of cells, the model of 
neighbourhood, and the number of initial 
configurations. The presented model and algorithm 
are prepared in order to be applied in the modelling of 
recrystalization process, and it is important to define 
these rules, corresponding to the considered 
phenomena.   
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