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ABSTRACT 
 

To optimize the thermo-mechanical processing of aluminum base alloys, 
mathematical modeling was used in a laborious research program by planned 
experiment of thermomechanical treatment process applied to an Al-Zn system 
alloy. The paper presents the modeling stages, the type of mathematical model that 
allows for the analysis of the main influences (technological parameters),their 
influence size and the type of correlationsbetween them. The simulation of the 
thermomechanical treatment process by varying the process parameters within the 
tested values and thermomechanical treatment optimization (getting the optimal 
complex of strength and plasticity properties in a convenient treatment option) is 
possible using the mathematical model developed. 
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Introduction 
 
  Mathematical modeling means transposing of a 
real physical process into a mathematized form. The 
construction of the models associated to processes and 
systems is a vital part of the simulation process, being 
absolutely necessary to distinguish between different 
types of models that can be used by analysts. Process 
modeling can be considered as consisting of two 
stages: one that specifies the form under which the 
model must be expressed, and the second describing 
how it is used to provide a series of predictions or 
provide the optimal solution of the problem studied. 
In this paper we conducted the mathematical model of 
thermomechanical treatment process applied to alloys 
studied by statistical methods i.e. regression analysis 
by active experiment.  

Currently, the most effective methods for 
programming the experiment are those concerning 
solving extreme problems involving the determination 
of levels of independent quantities (input), u1, 
u2,...uk, for which the objective function:    

 
                               (1)  
 

has extreme values (maximum or minimum) as well 
as the calculation of these values. 

For each basic factor the base levels, 01u , 02u  

respectively 03u , are determined, whichare actually 
thecoordinates in the factorial space of the 
randomlychosen starting point as well as the ranges 

1uΔ , 2uΔ  and 3uΔ . By addingthe variation 
interval to the basic level, the superior level is 
obtained, and by lowering it the inferior level of the 
factor is obtained. If the encoded value of ui factor  is 
denoted by xi,  resulting from the relationship: 

i
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Δ
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= 0  

the higher level will be coded with a score, the lower 
by -1, and the basic level to 0. 
 

Experimental conditions 
 
  In the case of high strength aluminum alloy 
AlZn5.7Mg2.6 processed according to the schedule in 
Figure 1, in which the solution hardening involves 
primarily hardening compounds leaching, a process 
that takes place through activation of diffusion 
phenomena in solid form, taking into account 
diffusion laws, it can be said that the solution 
temperature and the maintaining time at this 
temperature will have a decisive influence on the 

( )kuuufy ,...,2,1=
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effectiveness of treatment by their influence on the diffusion coefficients and on the process dynamics. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1 Technological  scheme of achieving  experiments 
I-homogenization; II-solution hardening; III -artificial aging; 

IV - cold plastic deformation, V - artificial aging 
 

Cold plastic deformation was experimented with 
three different degrees of deformation, namely: ε1 = 
10%, ε2 = ε3 = 20% and 30%. In this way the hard 
compounds deform (elongate in the direction of the 
deformation) or crumble. 

Given the above, the following factors will be 
considered as process parameters: 1- artificial aging 

temperature - T, [° C]; 2- maintaining time – τ [h]; 3- 
the degree of deformation – ε [%].  

Table 1 shows the correspondence between 
different levels of the factors expressed in natural 
values with those expressed in coded values for the 
three factors used in the thermomechanical treatment 
process. 

 
Table 1. Correspondence between the values of the factors expressed in natural 

and  coded units [1] 
 

Process temperature Process time The degree of deformation 
Factor Natural units,  

in ° C 
Values 
coded 

Natural units,  
in hours 

Values 
coded 

Natural units,  
in hours 

Values 
coded 

Base 
level u01 = 160 0

40
160160

=
−  u02 = 12 0

4
1212

=
−  u03 = 20 0

10
2020

=
−  

The 
ranges Δu1 = 40 0 Δu2 = 8 0 Δu3 = 10 0 

Higher u1s = 200 1
40

160200
+=

−  u2s = 20 1
8

1220
+=

−  u3s = 30 1
10

2030
+=

−  

Lower u1i = 120 1
40

160120
−=

−  u2i = 4 1
8

2012
−=

−  u3i = 10 1
10

2010
−=

−  

 
In the coded representation of the experiment the 
following notations and symbols were used:  
• x1 – artificial aging temperature, T, ° C; 
• x2 – mentaining time, τ, [h]; 
• x3- deformation degree, ε [%]; 
• Y1 - tensile strength, Rm, [MPa]; 
• Y2 - yield strength, Rp02 [MPa]; 
• Y3 – specific elongation at break, A5, [%]; 
• Y4 - hardness, HB; 
 

Between the natural and coded values of xi factors 
there are the following linking relations: 

   
t
tt

x
Δ
−

= 0
1 , 

τ
ττ

Δ
−

= 0
2x , 

ε
εε

Δ
−

= 0
3x ,       (2) 

To determine the dispersion of results 
reproducibility , six experiments were performed at 
the basic levels of the factors. In this way a full 
factorial experiment of the type 23 was performed as 
shown inTable 2. 
 

T
em

pe
ra

tu
re

, [
°C

] 

100°C

500°C

120 ÷ 200°C 

480°C 

Time, [h] 
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Table 2. Matrix determination for the factorial experiment of the type 23 [1] 
 

Nr. 
exp. X0 X1 X2 X3 X1 X2 X1 X3 X2 X3 Y1 Y2 Y3 Y4 

1 +1 +1 +1 +1 +1 +1 +1 487 424 8,1 135 
2 +1 -1 +1 +1 -1 -1 +1 630 591 6,8 194 
3 +1 +1 -1 +1 -1 +1 -1 455 384 8,7 122 
4 +1 -1 -1 +1 +1 -1 -1 569 516 7,7 155 
5 +1 +1 +1 -1 +1 -1 -1 435 391 10,4 121 
6 +1 -1 +1 -1 -1 +1 -1 577 531 8,4 171 
7 +1 +1 -1 -1 -1 -1 +1 411 377 11,0 109 
8 +1 -1 -1 -1 +1 +1 +1 507 468 9,5 135 
9 +1 0 0 0 0 0 0 498 452 10.0 123 

10 +1 0 0 0 0 0 0 512 473 9,0 145 
11 +1 0 0 0 0 0 0 506 459 8,9 143 
12 +1 0 0 0 0 0 0 503 456 8,5 140 
13 +1 0 0 0 0 0 0 514 475 9,2 148 
14 +1 0 0 0 0 0 0 509 462 9,1 144 

 
Considering the function Yi as the analytical 
expression of the order I model, that is: 

ji

ji
j
i

iji
i

ii xxcxccY ∑∑

≠
=
==

+⋅+=
3

1
1

3

1
0             (3) 

Equation (3) is written as matrix form: 
           Y = X·C                                        (4) 
where: X is the matrix of experimental 

conditions

mnnnn

m

m

m

x...xxx
...............

x...xxx
x...xxx
x...xxx

X

210

3231303

2221202

1211101

=  

 
m - number of terms of equation (3); 
n - number of considered experiences; 
C – column vector of coefficients ci  
C = [c0, c1,..., cn] T 
T – matrix transposition symbol 
Y - matrix of experimental results 

Y = [ Y1 , Y2 , ... , Yn ]T                           (5) 

      
where : Y1 = [487  630  455  569  435  577 411  507  
498  512  506  503  514  509] 
Y2 = [424  591  384  516  391  531  377  468  452  
473  459  456  475  462] 
Y3 = [8,1  6,8  8,7  7,7  10,4  8,4  11  9,5  10  9  8,9  
8,5  9,2  9.1] 
Y4 =[135  194  122  155  121  171  109  135  123  145  
143  140  148  144] 
For this case, the linear function (3) has a particular 
form: 

32233113

21123322110
xxcxxc

xxcxcxcxccYi
⋅⋅+⋅+

⋅⋅+⋅+⋅+⋅+=
                 (6) 

Multiplying at the left side each term of the matrix 
equation by unitary matrix 
        E = [XT X] -1 × XT                                          (7)  
there follows:    
        C = [XT X ×]-1 [XT x Y]                                 (8) 
expression that represents the relationship  for 
calculating the coefficients of regression equation. 
Using the values in Table 2, based on relation (8), 
first order models coefficients are obtained,  
summarized in Table 3. 

 

Table 3. Values of first-order models coefficients 
 

Yi 
          ci 

Y1 Y2 Y3 Y4 

c0 508.0714 461.3571 8.95 141.7857 
c1 -61.875 -66.25 0.725 -21 
c2 23.375 24 -0.4 12.5 
c3 26.375 18.5 -1 8.75 
c12 -9.375 -10.5 0.1 -6.25 
c13 -2.375 -8.5 -0.15 -2 
c23 -0.125 4.75 0.025 0.5 
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Therefore the mathematical model of first-order equation (7) for each property in part, is: 
32125031375221375933752623752318756107145081 xx,xx,xx,x,x,x,,Y ⋅⋅−⋅⋅−⋅⋅−⋅+⋅+⋅−=     (9) 

Y2 = 327543158215103518224125663571461 xx,xx,xx,x,xx,, ⋅⋅+⋅⋅−⋅⋅−⋅+⋅+⋅−                              (10) 
Y3 = 320250311502110324017250958 xx,xx,xx,xx,x,, ⋅⋅+⋅−⋅⋅+⋅−⋅−⋅+                                      (11) 
Y4 = 325031221256375825121217857141 xx,xxxx,x,x,x, ⋅⋅+⋅−⋅⋅−⋅+⋅+⋅−                                (12) 
 

By replacing the variables xi with relations (2) 
and doing the respective calculations in the above 
equations, the following equations are obtained 

representing expressions of mathematical first –order 
models for the four properties considered: 

 
ετετετετ ⋅⋅−⋅⋅−⋅⋅−⋅+⋅+⋅−= 0016,00059,00293,06063,36406,70766,11339,592),,(1 ttttY                      (13) 

( ) ετετετετ ⋅⋅+⋅⋅−⋅⋅−⋅+⋅+⋅−= 0594,00213,00328,05375,40625,78375,0621,536,,2 ttttY                    (14) 
( ) ετετετετ ⋅⋅+⋅⋅−⋅⋅+⋅−⋅−⋅+= 0003,00004,00003,00438,01063,00219,0125,8,,3 ttttY              (15) 
( ) ετετετετ ⋅⋅+⋅⋅−⋅⋅−⋅+⋅+⋅−= 0063,0005,00195,06,15625,41906,05357,137,,4 ttttY                      (16) 

 
First-order mathematical models have been 

verified statistically, using Fischer criterion to decide 
if they can be used for studying the analysed process 
or if it is necessary to determine the higher order 
models.  

The values calculated using Fischer criterion for 
the four first order mathematical models 
are summarized in Table 4.  

Table 4 shows that all models are consistent 
with the experimental data and can be used in process 
optimization. 

To verify the significance of coefficients for the 
appropriate model, the following  ratio is determined 
for each coefficient: 

rez
bi

csi PM
PM

F =

 

Table 4. Calculation data for checking model adequacy 
 

Calculated values Y1 Y2 Y3 Y4 
SPrez 224.1752 478.2142 1.525 419.3571 
PMrez 32.025 68.316 0.22 59.90815714 
SPer 176 430.8333 1.2283 401.5000 
PMer 35.2 86.16666 0.2457 80.3 
SPin 48.1752 47.3809 0.2967 17.8571 
PMin 24.0876 23.69045 0.1484 8.92855 
Fci 0.6843 0.275 0.60388 0.11118991 

Accordance Concorde Concorde Concorde Concorde 
 

Where PMrez is the average square of reziduals 
calculated in Table 4 PMbi  is the average square  of 
the coefficients which are calculated  with  the matrix 
relation 

PMbi = D (X t Y), where D is the diagonal  
matrix with the model coefficients as the main  
diagonal  elements, the other elements of the  matrix 
being null.  

X is the matrix of experimental conditions at the 
considered levels (-1, 0, 1) 

Y – the matrix of experimental results at the 
levels considered (-1, 0, 1) Using equation (17) we 
obtain the values of the Fcsi ratio for the model 
coefficients shown in Table 4. 

Coefficients ci for which Fcsi> FT [1, frez,  (1-
α)%] are considered significant; in this case FT (1, 7, 
95%) = 5.79. 

Thus the four equations become: 
( ) τ⋅⋅−ε⋅+τ⋅+⋅−=ετ t,,,t,,,,tY 029064260971951516111                                                     (18) 
( ) τ⋅⋅−ε⋅+τ⋅+⋅−=ετ t,,.t,,,,tY 032085125826213715902                                                     (19) 
( ) ε⋅−τ⋅−⋅+=ετ 1005001806583 ,,t,,,,tY                                                                     (20) 

ε⋅+τ⋅+⋅−=ετ 8750562152505351894 ,,t,,),,t(Y                                                                    (21) 
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Equations (in t, τ and ε) (18), (19), (20) and (21) 
are valid for t = 120 ... 200 °C, τ = 4 ... 20 hours and 
ε = 10 .. .30%. Using relations (18), (19), (20) and 
(21) for examplification, we have drawn graphs of 
variation of each property function of time for a 
treatment temperature of 160 ° C, in the case of the 
deformed alloy where the degree of deformation is - 
20%. 

As shown in Figures 2 ÷5  mechanical property 
values determined by calculations using mathematical 
models are close to the experimentally determined 
values. This is the proof that the mathematical 
modeling achieved allow for simulation of 
thermomechanical treatment process con- ducted 
according to the scheme in Figure 1. 

 
Fig.2. Variation of mechanical resistance 

according to treatment time. 
 

 
Fig.3. Variation of yield stress with treatment time. 

 

 
Fig.4. Variation of elongation at break with treatment time. 
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Fig.5. Brinell hardness variation with treatment time. 

 
Conclusions 

 
  The mathematical model presented in the set of 
equations (30)÷ (33) allows  simulation of 
thermomechanical treatment process, by varying the 
process parameters  values, within  experimental 
limits. 
  The aging factor  has the biggest influence on 
the increase of mechanical  strength as the value of 
the influence factor coefficient  is positive and of the 
highest value. The next important influencing factor is 
the degree of cold plastic deformation, as the 
coefficient of this factor shows,  mechanical strength 
properties increase as the degree of  deformation 
value increases. The value of the temperature 
parameter  coefficient indicates that  when the 
temperature increases, there is a decrease in strength 
properties. 

Elongation at break is influenced according to 
the model, first by treatment temperature, meaning 
that as treatment temperature increases, the elongation 
increases too. From the analysis of the regression  
equations obtained, it results that an increase in the 
final aging temperature, in the range considered, 
above 180 C will lead to lower strength characteristics 
(tensile strength, yield strength and hardness); instead 

the plasticity increases (relative elongation increases 
to some extent with increasing aging temperature). 

Mechanical strength depending on  aging time 
increases with time, and elongation at break 
decreases.  

Regarding the influence of the degree of 
deformation on the properties of resistance (Rm, 
Rp02 and hardness) that they have  higher values than 
those prescribed by  EN 485-2-2007, for all three 
degrees of deformation. 

The mathematical model presented allows 
for establishing the technological conditions that can 
lead to obtaining the optimal properties complex of 
strength and plasticity, in alternative technology 
involving minimal costs. 
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