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ABSTRACT 
 

The moment method in statistical dynamics is used to study the dynamical 
elastic constants (C11, C12, C44), Young’s modulus (E), bulk modulus (K), and shear 
modulus (G) of binary alloys. Lattice mechanical properties of disorder alloys are 
calculated as a function of the temperature. In most cases there is a good agreement 
between the present and the experiment. 
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1. Introduction 
 

Elastic deformation is one of the most important 
considerations in structural applications of solid 
materials. In recent years, there has been considerable 
interest in elastic-plastic deformation of materials. 
Some of these studies are listed in Refs. 1 and 2. 

Various theoretical studies have been used to 
study the dynamical elastic properties of simple 
metals and alloys. Phonon spectrum and lattice 
mechanical properties of metals have been calculated 
using ab-initio theory [2, 3]. Recently, a pseudo 
potential model depending on the effective core radius 
is used to study the interatomic interactions, 
dynamical elastic constants (C11, C12, C44) and 
Young’s modulus (E), the behavior of phonon 
frequencies, etc., for simple metals and alloys [4]. 
Rare-earth and actinide elements such as La, Yb, Ce, 
Th... also have been considered by the same method 
[5]. 

In this paper we have calculated dynamical 
elastic constants (C11, C12, C44), Young’s modulus (E), 
bulk modulus (K), and shear modulus (G) by using 
the statistical moment method (SMM) [6,7]. In Sec. 2, 
the analytic expressions for elastic moduli (E, K, G) 
and dynamical elastic constants are given. In Sec. 3, 
the SMM calculations are performed by using 
effective pair potentials for Cu-Zn, Cu-Ni, Ni-Cr, Al-
Cu, Al-Mg, Pd-Ag…alloys with various 
concentrations and compared to the experimental 
results.  

2. Theory 
 

2.1. Free energy and the nearest neighbor 
distance of binary alloy 

We consider a binary alloy consisting of two 
components A and B neglecting vacancies and 
interstitials with face-centered cubic structure (f.c.c) 
and body-centered cubic structure (b.c.c). CA, CB are 
the concentration of atoms A, B, respectively. The 
atoms chosen as base are atom α located in lattice 
point β. This system is called effective systems (α, β). 
The free energy of the system may be determined by 
the combination of the free energy of these effective 
system (α, β) as: 

( )a a b b a a b b
a A A b A A a B B b B B

c c
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where υa, υb the concentration of the lattice points of 

type a, b. a bp , pα α  (α = A, B) are the probability of 
atom α located in the lattice points a, b, respectively. 

Probabilities pβα (β = a, b) satisfy the following 
relations: 
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β
αΨ  is the free energy of the effective system 

(α, β)  and Sc is the entropy of mixing. 
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                              (2) 

 
with: k is the Boltzmann constant. 

In order to define β
αΨ  we use the statistical 

moment method (SMM) described in [6, 7]. The free 
energy of the effective system (α, β) will have the 
form of the free energy of the systems of N harmonic 
oscillator [7] 
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where: m* = CA mA + CB mB;  mA, mB are the mass of 
atoms A and B, and the sum of the effective pair 
interaction energies of the effective system (α, β), 

ouβα , and the second - order vibrational constant, 

kβα , are given as: 
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here: i
β
αϕ (⎜ai⎜) is the potential energy of interaction 

between particle i-th and the base particle, ai is the 
vector determining the equilibrium position of particle 
i, ui the displacement of i-th particle from its 
equilibrium position. 

In the case of disorder alloys AB, we have [6]: 
 

a b * a b *
A A A B B B, ,Ψ = Ψ = Ψ Ψ = Ψ = Ψ      (6) 

 

where: * / NαΨ  is the free energy of atom α 

(α,α’=A,B) surrounded by 1 1 'J n p / Cα ααα
=  of  

atoms α’ and (n1 - J1α) of atoms α on the first 

coordination sphere and 2 2 'J n pβα
α

=  2 'n C
α

= of 

atoms α’ (and ( n2 - J2α ) of atoms α on the second 
coordination sphere; n1, n2 is the number of the atoms 
on the first and second spheres.  

Then, we can find the expression of the free 
energy of disorder alloy with CB<<CA: 

 

AB A A B B cC C TSΨ ≈ Ψ + Ψ − ,                (7) 
 

where: ψα is the free energy of the effective metal α. 
In order to define the nearest neighbor distance, 

we can use some different ways. In this paper, the 
nearest neighbor distance is determined by 
minimizing the free energy with respect to the volume 
of the system and we obtain the expression of the 
nearest neighbor distance of disorder binary alloy [8]: 
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                                                                         (9) 

with: aα is the nearest neighbor distance at 
temperature T of the effective metal α. 

 
2.2. Dynamical elastic constants and 

moduli 
If ABΨ  is the Helmholtz free energy for a 

volume element of the considered system in the case 
without external force p, P

ABΨ  is the one in the case 
of external force P, ε is the elastic strain, σ is the 
stress, the relation of these quantities can be written in 
the approximation form [9]: 

 
2

P
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In the above expression, the term 
2E

2
ε

 is the 

deformation energy for a volume element of the 
system, E is the Young’s modulus.  

From the definition of the elastic strain ε, we 
have: 

 
P

AB AB AB

AB AB

a a a
a a
Δ −

ε = =                       (11) 

 

here: ABa , P
ABa  is the nearest neighbor distance of 

the system in the case without and with external force 
P, respectively, and has the form 

 

AB 0AB 0a a y= + , P P
AB 0ABa a y= + ,          (12) 

 

where: a0AB and P
0ABa  is the nearest neighbor 

distance of the system in the case without external 
force P and in the case of external force P at zero 
temperature, respectively; y is the displacement of 
atom in the case of external force P [7] 

 
y = y0 + A1AB P + A2AB P2                       (13) 
 

here: y0  is the displacement of atom in the case 
without external force P.  

In the case of elastic deformation, when 
P

0AB 0AB 0ABa a a 0Δ = − ≈ , from Eq. (11), (12) 
and (13), we have: 

  

0 0 1AB 0 1AB

AB AB AB

y y y A P y A P
a a a
− + −

ε ≈ ≈ = .       (14) 

 
Using the relation of the stress σ and the strain ε 

for the Hookean deformation, so we have E∂σ
=

∂ε
, 

and Eqs. (10) and (14), we obtain the expression of 
the Young's modulus E:  

 

AB

1AB AB 1AB

a 1E
A P a A
σ

= =
π

 .                       (15)  

        
Because aAB and A1AB depend on temperature 

[8], so Eq. (15) is the expression of the Young's 
modulus at various temperatures. 

Using the relation of the Young's modulus E 
with bulk modulus K and shear modulus G [10], we 
obtain the analytic expressions for elastic moduli: 

 

EK
3(1 2 )

≈
− υ

 ,   EG
2(1 )

=
+ υ

           (16) 

 
with υ is the Poisson’s ratio. 

It is known that for cubic crystals, the elastic 
constants are [11]  
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3. Results and discussion 
 

In order to check the validity of the analytical 
expressions of the elastic properties of the metallic 
systems described herein, we performed calculations 
for some disorder binary alloys. For simplicity, we 
take the effective pair interaction potential in the 
systems as the power law, similar to the Lennard-
Jones pair interaction potential: 

n m
0 0r rD(r) m n

n m r r

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥ϕ = −⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
,     (18) 

 
where the potential parameters such as D and r0 

are determined to fit experimental data (e.g., cohesive 
energy and elastic modulus). Using the experimental 
data of the potential parameters D, r0 and the 
Poisson’s ratio υ (Tab. 1) and the expressions 
obtained in Sec. 2, we calculated the values of the 
elastic constants and moduli at temperature T and the 
zero pressure for Cu-Zn, Cu-Ni, Al-Cu,… alloys with 
various concentrations. The calculated results are 
presented in Tabs. 2-5. 

In Tab. 2, we show the calculated values of the 
nearest neighbor distance aAB of FexCu1-x alloys at 0K. 
In Tabs.3 and 4, we show our calculated and 
experimental results of the elastic moduli at various 
temperatures. The accuracy of the elastic moduli is 
remarkably good. The elastic moduli of Pd-80Ag (at 
T=293K) and Al-4.5Cu (at T=300K) alloys are in 
excellent agreement with the experimental results. 

Using Eqs. (17), we calculate the values of the 
elastic constants at temperature T and zero pressure 
for Ag-Mg, Ag-Pd, Cu-Zn, … alloys. Our calculated 
and experimental results of C11 at 300K are presented 
in Tab. 5. The present SMM calculations of the elastic 
constants agree well with the experimental values. All 
of the case are in excellent agreement with the 
experimental results, within ~0.9% for Ag-7.33Mg, 
Cu-4.59 Zn,… alloys. 
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The decrease of the elastic moduli and constants 
with increasing temperature arises from the thermal 
lattice expansion and the inharmonic effects of the 
vibrational. These results are presented in Fig. 1 and 
Fig. 2. The SMM calculations are performed by using 

the effective pair potential for Cu-Zn, Cu-Ni, Ni-Cr, 
Al-Cu, Al-Mg, Pd-Ag… alloys. In general, we have 
obtained good agreement in the elastic constants and 
moduli between our theoretical calculations and 
experimental values. 

 
Tab.1. Potential parameters D, ro, m, n and the Poisson’s ratio υ determined by the experiment [12] 

 

Metals m n r0 (Ao) D (10-16 erg) υ 
Ag 5.5 11.5 2.8760 4589.328 0.38 
Al 5.5 11.0 2.8541 4133.928 0.34 
Ni 8.0 9.0 2.4780 5971.536 0.30 
Cu 5.5 11.0 2.5487 4693.518 0.37 
Pt 5.0 9.2 2.7689 9914.196 0.40 
Pd 5.0 9.0 2.7432 7559.778 0.38 
Ir 5.0 11.0 2.8847 11750.148 0.26 
Fe 7.0 11.5 2.4775 6416.448 0.26 
Mg 4.5 14.0 3.1882 2069.034 0.30 
Zn 5.5 10.0 2.7622 2320.47 0.35 
Cr 6.0 15.5 2.4950 6612.960 0.33 

 
Tab.2. SMM calculations of the nearest neighbor distance aAB of FexCu1-x alloys at 0K  

and ab-initio results [13] 
 

  Fe-10.0Cu Fe-25.0Cu Cu-25.0Fe 
SMM 2.404 2.410 2.458 aAB(A0) 

 ab-initio 2.494 2.494 2.490 
 

Tab.3. SMM calculations and Expt. results of Young’s modulus E (in 1010 Pa)  
at T=586K for alloys 

 

Alloys Cu-5.0Zn Cu-10.0Zn Cu-20.0Zn Cu-30.0Ni Ni-20.0Cr 
SMM 11.11 10.71 9.92 13.81 20.00 
Expt. [14] 11.70 11.70 11.00 15.20 21.00 

 
Tab.4. SMM calculations and Expt. results of Young’s modulus E ( in 1010 Pa) 

at T=293K, T=300K for alloys (Expt.a [12]; Expt.b [14]) 
 

  T= 2930K  T=3000K   
 Alloys  Pd-80.0Ag Pt-10.0Ir Al-4.5Cu Al-3.8Mg Al-8.0Mg Al-10.0Mg 

E SMM 9.0 16.6 7.26 6.82 6.59 6.48 
 Expt. 9.0a 15.0a 7.10b 7.10b 7.10b 7.10b 

G SMM   2.67 2.51 2.42 2.38 
 Expt.   2.65b 2.65b 2.65b 2.65b 

  
Tab.5. SMM calculations and Expt. results of elastic constant C11 ( in 1011 Pa) at T=300K  

for alloys (Expt. [14]) 
 

Alloys Ag-3.07Mg Ag-7.33Mg Ag-6.22Pd Ag-2.4Zn Ag-3.53Zn 
SMM 1.209 1.162 1.296 1.222 1.211 
Expt. 1.198 1.159 1.277 1.209 1.230 

Alloys Cu-4.1Zn Cu-4.59Zn Cu-9.1Zn Cu-17.1Zn Cu-4.81Al 
SMM 1.651 1.644 1.587 1.482 1.678 
Expt. 1.633 1.634 1.571 1.499 1.658 

- 64 -



FO N D ATĂ
197 6

 

 
THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI. 

FASCICLE IX. METALLURGY AND MATERIALS SCIENCE 
N0. 1 – 2011, ISSN 1453 – 083X 

 
 

3 0 0 6 0 0 9 0 0 1 2 0 0 1 5 0 0
0
2
4
6
8

1 0
1 2

P d -8 0 A g
 E
 K
 G

E
,K

,G
 (1

010
 P

a)

T  ( 0  K )
 

3 0 0 6 0 0 9 0 0 1 2 0 0 1 5 0 0

6
9

1 2
1 5
1 8
2 1
2 4

P t -1 0 I r
 E
 K
 G

E
, K

, G
 (1

010
Pa

)

T (  0 K  )
 

 

Fig. 1. The dependence of the Elastic moduli on the temperatures  
for Pd-80Ag and Pt-10Ir alloys 
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Fig. 2. The dependence of the Elastic constants on the temperatures for  
Ag-3.07Mg and Cu-4.81Al alloys 
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