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ABSTRACT 

 
The paper deals with critical considerations upon different points of view that 

were enounced by some authors referring to Maximum Stress Failure Criterion for 
composite materials. The considerations stem both from a comparative analysis of 
the mentioned theories and from the results of theoretical and numerical tests 
performed by the authors. 
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1. Introduction 

 
One of the most important phase of the structure 

design consists in the evaluation of the structure load-
carrying capacity. The appreciation of the failure 
moment depends on the contribution of each 
component of stress tensor to the failure process in 
each point where analysis was performed.  

In the special case of composites, the problem 
becomes more complicated as a result of the mixture 
of different materials with obvious different 
mechanical properties (inclusively strengths). If a 
failure criterion was defined, the problem of load-
carrying capacity stems from the evaluation of the 
position with respect to value 1 of the mathematic 
expression of the criterion 

                 ( ) 1,,,,F 1221 >=<τσσ  .                  (1) 
In the space of stresses σ1,σ2,τ12, (1) describes a 

so-called failure surface that is represented in fig. 1. 

 
 
Unlike the isotropic case, in (1) the coefficients 

represent the anisotropy principal directions for plane 
stress state.  

 
The most used failure criterions are as follows: 

- Maximum Stress Failure Criterion; 
- Maximum Strain Failure Criterion;  
- Hill-Mises Criterion; 
- Tsai-Hill Criterion; 
- Tsai-Wu Criterion; 
- Fracture Mode Criterion;  
- Hoffman Criterion;  
- Quadratic Criterion; 
- Interactive Fracture Criterion.  

Despite its major inconvenient, the Maximum 
Stress Failure Criterion is sometimes used to design 
composite structures because it is simple and 
conservative, i.e., it underestimates material strength 
increasing the safety factor for the structure under 
design.  
 
 

2. Brief description of the criterion 
 

This criterion belongs to a structural type and is 
based on the assumption that there can exist three 
possible modes of failure caused by stresses σ1,σ2,τ12, 
when one of them reaches the corresponding ultimate 
value; or, mathematically 
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NB. In (2) all values for ultimate stresses +σ for 
tensile strength, −σ  for compressive strength and 
τ for shearing strength are taken as positive 
quantities. 
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Fig. 1. Failure surface for plane stress state 
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As it can be seen, in this criterion the failure is 
associated with independently acting stresses and the 
possible stress interaction is ignored. 
According to the equations (2) the failure surface 
described in fig. 1 becomes as shown in fig. 2. 
           

 
 
A simple analysis of the criterion can lead to the 

main applicability cases: generally for simple 
structural elements where a certain loading scheme 
induces one of the three components of stresses σ1,σ2, 
τ12, obviously greater than the other two. As an 
example a turbine compressor blade is loaded 
especially along its own axes by centrifugal forces, 
developing an axial prevailing stress (fig. 3). 
            

 
 

3. Physical experiments 
 

A number of physical tests were performed in 
order to verify the accuracy of the criterion 
prescriptions. Because simple uniaxial tests can lead 
only to the intersection points of the axes with the 
failure surface (fig. 2), complex loading schemes were 
considered. For graphical representation reasons the 
loading schemes were in one of the planes (σ1,σ2), 
(σ1,τ12) or (σ2,τ12) referring to the notations in fig. 2. 
 

3.1. Tensile-compression experiments in 
(σ1,σ2) plane 

A set of complex failure experiments was 
performed by G. Prokhorov and N. Volkov upon a 
glass-epoxy fabric composite [1]. The tests were 
performed by using a biaxial testing machine, one 
direction in tensile and the other in tensile and 

compression senses of loading. The results were 
briefly presented in figure 4. 
      

 
 

Some remarks can be made analyzing the 
graphics in fig. 4: 
 all experiments denote that failure curve 

overestimates the material strength;  
 the maximum error of the criterion predictions is 

about 9%; 
 each loading case (Lci) was considered for a 

certain σ1/σ2 ratio; 
 two experiments were performed for each load 

case resulting in an average spread of about 4.3%.  
 

3.2. Experiments in (σ1,τ12) plane 
Annin and Baev [1] studied the same criterion 

performing complex failure experiments considering 
tensile and shearing loading upon a glass-epoxy fabric 
composite. The tests were performed by using 
cylindrical samples (considering torsion 
simultaneously applying together with tensile 
loading). The results were briefly presented in figure 
5. 

 
 
Some remarks can be made analyzing the 

graphics in fig. 5: 
 eliminating the A & B experiments it can be 

considered that the criterion provides a 
satisfactory prediction of strength; 

 the maximum error of the criterion predictions is 
about 12%; 

 
Fig. 5. Tensile-shearing failure envelope for 

glass-epoxy fabric composite 

 
Fig. 4. Tensile-compression failure envelope for 

glass-epoxy fabric composite 

 
Fig. 3. Prevailing uniaxial stress loading 
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Fig. 2. Failure surface for maximum stress 

criterion 
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 a certain loading case was not repeated and, in 

consequence no conclusion regarding the average 
result spread can be considered.  

 
3.3. Biaxial compression experiments in  

(σ1, σ2) plane 
As it was already highlighted, this criterion 

ignores the interaction of stresses during the damage 
process. The previous types of tests offered results 
considered satisfactory enough.  

However some tests upon composites on cross 
samples which were loaded with compression in two 
orthogonal directions denoted strong interaction of the 
stresses. As an example in fig. 6 we represented the 
corresponding experimental results from Belyankin et 
al.   

 

 
Analyzing the diagram in fig. 6, some remarks 

can be considered: 
 a considerable deviation of the experimental data  

from the prescriptions of the criterion can be 
noticed; 

 a maximum deviation of the experimental data 
exceeds 20% (22.31%); 

 another criterion that takes into account the 
mutual influence of the simultaneous stresses 
seems to fit better; (as an example in fig. 6 the 
prescriptions of the polynomial-tensorial criterion 
was drawn in dotted line). 
V Vasiliev and E Morozov in [1] offer an 

interesting explanation of this behavior of composite: 
“compression of the filling yarns increases the 
strength in the wrap direction and vice versa”. 

Another explanation of the phenomenon that can 
be considered for isotropic materials too, in this case 
of loading, can be: the compression on one direction 
produces, in normal cases, transversal dilatation on 
the orthogonal direction but this is blocked by the 
compressive loading on that direction. As a 
consequence, this tendency of dilatation can be 
translated as forces that reduce the intensity of the 
applied ones and the increase of the material strength. 

 
 

Mathematically this explanation can be quantified 
considering the loading case with respect to fig. 7. 

 
If only px is acting, it produces a dilatation of the 

specimen towards Oy axis given by 

x
x

xy
y p

E
⋅

ν
−=ε  .                                            (3) 

In order to vanish this deformation, a qy pressure 
given by 

xxy
x

y
y p

E
E

q ⋅ν⋅=                                            (4) 

will be necessary. That means that only a 
pressure given by  

xxy
x

y
yyef p

E
E

pp ⋅ν⋅−=                              (5) 

will effectively produce compression towards 
Oy axis. 

In a similar way, the effective compressing 
pressure on Ox axis will be 

 
yyx

y

x
xxef p

E
Epp ⋅ν⋅−= .                        (6) 

The considerations previously mentioned can be 
accepted only if Ox and Oy are the principal axis of 
anisotropy, respectively, the direction of fibers (filling 
yarn direction and wrap direction). If other directions 
are considered the coupling effects have to be 
considered and shearing deformations will appear. 

The main consequence of blocking the transversal 
contraction on Ox and Oy direction is a cumulative 
effect of dilatation towards Oz axis given by 
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A general conclusion that can be considered in 
this case is that the maximum strength failure criterion 
underestimates the strength and, accordingly, it 
increases substantially the real safety factor for 
composites structures. The increasing of safety factor 
constitutes an undesirable effect for composite aircraft 
structures where the factor is imposed by regulations 
around 1.5. (Higher values of the factor will increase 
the weight of the structure).   

 

 
Fig.7. Biaxial compression scheme 

 
Fig. 6. Biaxial compression failure envelope for 

glass-phenolic fabric composite 
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4. Numerical off-axis tensile experiments 

 
The simplest way to induce a complex plane 

stress state is to perform off-axis tensile experiments. 
As in the previous cases the main problem was to 
realize the identical manufactured type of composite 
to enssure a correct comparison of the results.  
 

4.1. Type of considered specimens 
The samples can be manufactured either as plane 

specimens cut from the same panel on different 
directions, or as cylindrical specimens identically 
manufactured. As the second way needs special 
manufacturing technologies (in order to assure 
identical microstructures with identical 
macromechanical characteristics) the authors preferred 
the first type of specimens. 

        
Applying stress σy as in fig. 7, σ1, σ2 and τ12 

stresses will be obtained in each point of the 
specimen. Considering the notations used in eq. (2) 
and noting yσ  the ultimate stress on y direction as 

well, the equations (2) become 

 
ϕϕ

τ
=σ

ϕ
σ

=σ
ϕ

σ
=σ

+++

cossin
,

sin
,

cos
12

y2
2

y2
1

y
.  (7) 

Obviously, the ultimate stress will consider the 
minimum value obtained from the three equations 
given by (7). 

 
4.2. Numerical experiments 

Some numerical experiments were considered in 
order to anticipate the physical experimental results.  

 
4.2.1. Specimen model 

Considering that the global failure of the 
specimen is a result of the failure of either fibers or 
matrix, a micromechanical model of lamina was 
considered, renouncing at the macromechanical one 
(homogenous and anisotropic) generally 
recommended in the literature.  

A glass-epoxy composite with v = 0.5 volume 
fraction was considered. 

Because the ratio of real diameter of the fibers 
(aprox. 8μm) with respect to the specimen dimensions 
(ρ) will induce an enormous number of equations, a 

study of the influence of the ratio on the results was 
done.  

The comparative term for the analysis was 
considered the equivalent stress in the middle of the 
specimen, and an error of 10-3 was considered 
satisfactory.  

A ratio ρ = 3.10-4 was considered satisfactory for 
the purpose of the study. 
 
 

4.2.1.1. Mathematical model of materials 
A linear elastic model was considered both for 

fibers and for matrix with the principal mechanical 
characteristics [2]: 

 
Table 1. Mechanical characteristics 

Material/Characteristics Glass Epoxy 
Tensile strength [MPa] 3200 130 

Shearing strength [MPa] 2240 58 
Young modulus [MPa] 8.6E4 4.5E3 

Poisson ratio 0.2 0.4 
 

4.2.1.2. Finite element model 
The numerical simulation was performed 

considering ANSYS 11 code.  
A plane isoparametric triangular element 

PLANE42 with three degrees of freedom was 
considered both for fibers and matrix, as well as the 
following hypothesis: 
 the specimen works in a plane stress state; 
 the connection between fibers and matrix is 

perfect (simulated by merging the nodes); 
  classical mounting clamps of the testing machine 

is considered.  
In fig. 8 is presented the FEM model of the 

specimen. 
It can be observed that in the plane stress problem 

the cylindrical shape of the fibers was ignored as well 
as the possible nonuniform distribution inside matrix.  

The orientation of fibers was considered for the 
study in an automatic way in steps of 5 degrees each. 

 
 

 

1

X

Y

Z
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Fig. 8. FEM model of specimen 

 
Fig. 7. Type of considered specimen and 

boundary condition model 
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4.2.1.3. Boundary conditions 
As it can easily be noticed from fig. 7, the chosen 

boundary conditions try to approximate the real 
loading scheme of the clamps of the testing machine. 
 

4.2.2. Calculus particularities 
The calculations were repeated increasing or 

decreasing the σy values until one of the stress 
components of matrix or fibers reached the ultimate 
value. The corresponding yσ value was noted as the 

ultimate strength of the lamina.  
The parasite theoretical stress concentrations 

were eliminated. 
A direct influence of the width of the specimen 

upon the calculated results was noticed. In order to 
eliminate this inconvenient some tests for different 
values of width were performed to establish the 
desirable value where the results are not strongly 
influenced.  

For the gamma of the experiments a ratio of 
1/14.5 was considered acceptable. As a result of tests 
(considering the equivalent stress in the middle of the 
specimen) it resulted that the desirable width of the 
specimen for a certain direction of fibers must enssure 
the continuity of a part of fibers between the clamps of 
the machine. 

Theoretically an infinite width of the specimen 
would be optimum.  

The direct conclusion is that the cylindrical 
specimens eliminate totally this inconvenient and 
would enssure more accurate results. 

4.3. Numerical results 
In fig. 9 an example of stress map is presented for 

the angle of fibers of 35o when the failure of the 
specimen took place as a result of shearing of the resin 
along the fibers. 

 
 

A simple analysis of the map denotes that the 
interruption of the fibers between the clamps leads to 
boundary effects, and sustains the cylindrical 
specimen shape. 

In the table 2, there are presented the resulted 
ultimate strength of the specimen that was obtained 
for different orientations of fibers. At the same time, 
in the table, we presented the modes of the damage 
that generates the failure of the specimen too: fracture 
of fibers, fracture inside matrix, shearing of the matrix 
along the fibers.   

 
 

Table 2. Numerical results 
 

ϕ yσ  
ϕ

σ+

2
1

cos
 

ϕ
σ+

2
2

sin

 
ϕϕ

τ+

cossin
12  

ϕ yσ  
ϕ

σ+

2
1

cos

 
ϕ

σ+

2
2

sin

 
ϕϕ

τ+

cossin
12  

[Deg] [MPa] [Deg] [MPa] 

0 1667 1667   50 119.02  221.5927 127.9363 

5 673 1679.755   55 120.11  193.7869 134.0687 

10 343 1718.809  368.466 60 121  173.3729 145.4591 

15 229   252.0431 65 122.3  158.2992 164.4223 

20 177.75   196.052 70 124  147.2464 195.9136 

25 149.25   164.504 75 126.12  139.352  

30 134.5   145.5089 80 128.02  134.0549  

35 124.5   134.0977 85 129.1  131.0015  

40 118.5   127.9497 90 130.02  130  

45 117.1  260.0771 126      

1

MN

MX

X

Y

Z

                                                                                

-63.2
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Fig. 9. Stress map for 35o fiber orientation 
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As the legend indicates in fig. 10: 
 curve 1 represents the variation of the 

ultimate strain of the lamina with respect to fibers 
orientation as a result of numerical tests; 

 curve 2 represents the variation of the 
ultimate strain of the lamina with respect to fibers 
orientation according to first eq. in (7); 

 curve 3 represents the variation of the 
ultimate strain of the lamina with respect to fibers 
orientation according to second eq. in (7); 

 curve 4 represents the variation of the 
ultimate strain of the lamina with respect to fibers 
orientation according to third eq. in (7). 

Analyzing the fracture mode of the specimen 
with respect to the fiber orientation from eq. (7) as 
well as from the numerical results given in table 2 and 
synthesized in the graphic from fig. 10, some 
observation can be done: 

 for ϕ = 0o the failure takes place as a result 
of fiber damage; 

 for 5o < ϕ < 65o the failure takes place as a 
result of matrix damage because of shearing ultimate 
stress; 

 for 65o < ϕ < 90o the failure takes place as a 
result of matrix damage because of equivalent 
ultimate stress. 

NB. If the eq.  

ϕϕ
τ

=
ϕ

σ
=σ

++

cossinsin
12

2
2

y
,                       (8) 

will be solved for a certain type of composite 
the point of separation between matrix shearing 
failure zone and matrix tensile failure can be found. 
For the case under analysis the solution of equation 
(8) was found ϕ = 66,4o and this satisfactorily resulted 
from numerical tests, ϕ = 65o. 

 The minimum value of ultimate strength is 
not for ϕ = 90o; For the particular studied case 

MPa1.117miny =σ  and it corresponds for a 

direction of fibers of about 45o. The direction of fibers 
for the minimum value of ultimate strength depends 
on the value of the ratio of matrix ultimate shear 
strength and matrix ultimate tensile strength.  

N.B. For theoretical cases governed by eq. (7) 
the minimum value for ultimate strength in the 
availability domain of the third relation, will be 
obtained solving the eq. 

0
cossin
12y =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ϕϕ

τ
ϕ∂
∂

=
ϕ∂
σ∂ +

.                    (9) 

The resulted solution of the eq. (9) is  
o45±=ϕ .                                                    (10) 

A very good concordance with the numerical 
experiment can be noticed too. 

 

 

 
 

Fig. 11. Jones ultimate tensile experiments, 1, 2,
3 curves corresponding to eq. (7) and “o” 

experimental tensile data. 
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Fig. 10. Ultimate stress variation with respect to fibers orientation 
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As a supplementary validation of the numerical 
experiments, some experimental data taken from 
Jones [3] will be considered. A quite good 
concordance of the experimental data with the 
numerical ones denotes satisfactory results able to 
validate the numerical model.  

Because of the mechanical characteristics of the 
composite tested by Jones (matrix shearing ultimate 
stress much inferior to the tensile one) the intersection 
point of (2) and (3) curves is strongly deviated to the 
left (30o). 

As a general validation, the modes of failure are 
similar both in the physical and numerical tests. 
 

5. Conclusions 
 
1. The ultimate strength failure criterion ignores the 

interaction of stresses and this leads to an 
underestimation of the failure; as a result, of an 
increasing safety factor and a corresponding 
increasing structure weight will be noticed. 

 

2. In some cases, the criterion can be used to design 
the composite structures, because it is simple and 
conservative, especially for simple structural 
elements where a certain loading scheme induces 
one of the three components of stresses σ1,σ2, τ12, 
obviously greater than the other two. 

3. Numerical tests offer a general spectrum of the 
failure tests generating enough satisfactory data. 

4. Physical failure tests on similar samples as the 
simulated ones will consist in the next step in the 
criterion description and analysis. 
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