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ABSTRACT 
 

This work presents an analytical procedure for estimating elastic-plastic 
stresses and strains in notched shafts subjected to synchronous non-proportional 
torsional and tensile cyclic loading. The specification of the equivalent stress 
concentration factor is firstly accomplished. Neuber’s rule in conjunction with the 
assumed material law provides the relation between the applied loading and the 
equivalent stress and strain. Principal stresses and strains yield from the 
corresponding equivalent values incorporating Hencky’s equations. The 
transformation of the principal stresses and strains to the appropriate coordinate 
system yields the final result. For the assessment of the analytical procedure, notch 
stress-strain results from several finite element analyses of an axisymmetric 
cylindrical shaft with a circumferential groove subjected to multiaxial synchronous 
fatigue loading are presented. A satisfactory agreement between the analytical and 
numerical results is observed.  
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1. Introduction 

 
Engineering components often provide unavoid-

able local stress concentrations due to notches or 
other geometrical discontinuities. Such stress 
concentration sites yield intense cyclic plastic 
deformation under service loading, which may give 
rise to a drastic reduction in the operational lifetime 
of a structure. The understanding of the local stress-
strain responses on the failure-critical areas and a 
thorough cognition into the damage evolution process 
are ultimate prerequisites to preserve structural safety 
in conjunction with design optimization.  

Nowadays, extensive literature exists concerning 
approximate methods for computing notch stresses 
and strains. For the pure elastic case, the quantities of 
interest are the stress concentration factors, which 
describe the local stress amplification at a notch-root. 
Approximate and exact results for stress 
concentration factors can be found in many reference 
books [22, 25, 35]. Studies on this subject can be 
found in [8, 24, 40]. The corresponding elastic–
plastic notch problems are, however, much more 
complex than those for the pure elastic case. For 

uniaxial loading, approximate methods have been 
proposed in [5, 9, 11, 17, 23, 27, 35, 36]. 
Applications of Neuber’s rule to notch fatigue 
analysis have been presented in [34, 37]. 
Approximate methods for the estimation of multiaxial 
stress–strain have been developed in [1, 2, 5-7, 9, 10, 
12-16, 38]. 

In our previous works [29-32] basic investigations 
dealing with the well-known kinematic hardening 
rule of Prager-Ziegler [26, 39] in conjunction with the 
von Mises yield criterion [19] were investigated. 
Prager-Zieler’s kinematic hardening rule is capable to 
describe linear material hardening in a reliable way. 
Therefore, and due to its simplicity, it is implemented 
in all common commercial finite element programs. 
However, neither the material cyclic stress-strain 
curve, nor the hysteresis loop shapes that arise during 
the fatigue process can be described with good 
precision [18]. 

Especially in low cycle fatigue with high plastic 
strains, as well as in cases with variable amplitude 
cyclic loading a linear kinematic hardening model is 
not capable to provide a realistic transposition of the 
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yield surface within the whole stress spectrum. To 
overcome these obstacles, several improvements have 
been proposed during the last decades. One way to 
cope with these deficiencies is to apply multilayer [4] 
or multisurface [21] models. Thus, the curved stress-
strain relations can be sufficiently approximated by 
means of multi-segment lines providing the desired 
accuracy. 

In the present work, an approximate model [28, 
32] will be used for computing the complete elastic–
plastic notch stresses and strains. In order to verify 
the model, detailed elastic–plastic FE analyses for a 
cylindrical shaft with a circumferential notch are 
performed. The elastic–plastic material properties are 
described by the von Mises yield criterion [19] and 
the multilayer material model of Besseling [4]. 
Synchronous non-proportional cyclic tension/torsion 
loading with constant and variable amplitudes is 
applied to validate the accuracy of the results derived 
from the analytical model comparing them with the 
corresponding FE results. 

 
2. Problem formulation 

 
Consider an infinite and elastic-plastic cylindrical 

shaft with a circumferential groove as depicted in fig. 
1.  

D
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Fig. 1. The infinite notched shaft 
 

Table 1 includes the geometrical dimensions of 
the cylindrical shaft under investigation. 

 
Table 1. Geometrical parameters in [mm] 
Shaft 

Diameter 
Crucial 

Diameter 
Notch 
Depth 

Notch 
Radius 

D Di t Ρ 
140 70 35 3 
 

A tensile force N combined with a torsional 
moment MT are applied on the notched shaft. For 
convenience, the nominal tensile stress S and the 
nominal shear stress T, instead of N and MT are used 
as external loads in the analysis, which are related by  

22
=

i

NS
( D / )π

, 3
2

2
= T

i

MT
( D / )π

 .        (1) 

 
3. Approximation model 

 
The origin of the analytical model goes back to 

the work of Savaidis et al [28, 32]. The model uses 

the same input as the well-known model of Hoffmann 
and Seeger [12-15] for proportional loading as 
starting point. Taking the material’s stress-strain 
curve and the notch concentration factors for every 
individual loading as an input, two steps are 
performed.  

Step 1: Relationship between applied load and 
equivalent notch stress eqσ  and strain eqε .  

The elastic solution is based on the approximate 
uniaxial stress–strain relation for the equivalent 
quantities. The material law in conjunction with the 
elastic solution yields the relation between the applied 
external load and the equivalent stress, defined by the 
equation:  

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

e *eq eq
eq p *

eq

EF ,K
E S

σ σ εε
σ

,            (2) 

where the superscript ‘e’ denotes the elastic 
solution, F is a function of the ratio e

eq eqσ σ and the 
plastic limit load factor Kp , while S* and ε* are the 
modified nominal stress and strain respectively. In 
particular they are defined by 

( )1−= = =
e
eq* *u

p
y p

*K , S , g S
K
σσ

ε
σ

,        (3) 

in which σu is the ultimate limit load and σy is the 
load at yield initiation.  

Step 2: Derivation of the individual stress and 
strain components or principal stresses and strains 
from the equivalent stress σeq and strain εeq.  

For this, use is made of the yield criterion, flow 
rule and the boundary as well as the constraint 
conditions at the notch-root. The Prandtl-Reuss law 
yields 

3 1 2 3
2

= ⋅ =
p

eqp
i i

eq

d
d ' ,

h
ε

ε σ
σ

i , , ,              (4) 

with the plastic tangent modulus = p
eq eqh d dσ ε , 

while the Hencky’s law results in  

3
2

=
p
eqp '

ii
eq

ε
ε σ

σ
.                              (5) 

Assume that the directions of the principal 
stresses remain unchanged during loading, i.e., φi = 
const., then the following boundary and constraint 
conditions hold at the notch-root: σ3=0, ε2/ε1=const. 
The output quantities are the notch stresses σij=0, 
notch strains εij or εi, and the directions of the 
principal stress axes characterized by the orientation 
angles φi. 

The non-proportional loading can be classified 
into two different categories as illustrated in fig. 4. In 
the first loading category, both loading components 
are cyclic. In the second loading category, one 
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loading component is cyclic, while the other is kept 
constant. Three cases are distinguished according to 
fig. 2: 

 Case I: Both components, S and T, are cyclic 
and 1 S≥ a/Ta ≥ 0.65. This case corresponds to a large 
amplitude ratio Sa/Ta. 

 Case II: S (or T) is constant while T (or S) is 
cyclic, and 0.05 ≥ Sa/Ta ≥ 0 (or 0.05 T≥ a/Sa ≥ 0). This 
case corresponds to a small amplitude ratio Sa/Ta (or 
Ta/Sa).  

 Case III: Both components S and T are cyclic, 
and 0.65 ≥ Sa/Ta ≥ 0.05. This case corresponds to a 
moderate amplitude ratio Sa/Ta.  

With cases I, II and III, the complete range of the 
amplitude ratio Sa/Ta is covered. 

 
 

 
 
 
 
 
 
 
 
 

Fig. 2. Load case classification within the 
framework of the analytical model 

 
Detailed description how to proceed within each 

case is given in [28, 32]. 
 

4. Finite elements 
 

To verify the analytical procedure, various 
numerical analyses for a multiaxially loaded notched 
shaft have been performed. For its discretization 
13120 solid elements have been applied. Each 
element consists of 20 nodes and 14 Gaussian points. 
The total number of nodes is 51677. The shaft has 
been divided up to 40 cylindrical segments, each 
having an angle θ=9o. In the non-linear analysis, a full 
Newton-Raphson procedure [3] for all degrees of 
freedom has been applied. A section of the shaft is 
shown in fig. 3, whereby the element distribution is 
distinguished. 

 
 

 
 
 
 
 
 
 
 

Fig. 3. Mesh configuration  

The material law of the aluminum alloy Al5083 
is considered. The experimentally determined values 
of the cyclic hardening coefficient Κ´ and the cyclic 
hardening exponent n΄ amount to K΄ = 544 N/mm2 
and n΄ = 0.075, respectively. The elastic modulus E 
and Poisson’s ratio ν amount to E = 68000 N/mm2 
and ν = 0.32, respectively. 

 
5. Loading cases 

 
Table 2 summarizes the non-proportional syn-

chronous loading cases investigated here.  
 

Table 2. Loading cases under investigation 
Load
case C mS  

[N/mm2] 
aT  

[N/mm2] 
eqS  

[N/mm2] 
L1 0 0 225.630 390.8 
L2 0.623 132.269 212.311 390.8 
L3 1.000 195.402 195.402 390.8 
L4 1.605 265.626 165.499 390.8 
L5 5.000 369.275 73.855 390.8 
L6 10.00 385.070 38.507 390.8 

 D mT  
[N/mm2] 

aS  
[N/mm2] 

eqS  
[N/mm2] 

L7 0 0 390.804 390.8 
L8 0.623 65.492 265.637 390.8 
L9 1.000 195.402 195.402 390.8 
L10 10.00 225.255 22.525 390.8 

Cyclic S and Τ 

Case I 

65.0
T
S

1
a
a ≥≥  

Case III 

a

a

S0.65 0.05
T

≥ ≥

Case II 

005.0005.0 ≥≥≥≥
a

a

a

a

S
T

or
T
S

Cyclic S - Monotonic Τ 
or  

Cyclic Τ - Monotonic S 

 
Two main loading categories are distinguished in 

Table 2: (a) cyclic fully reversed tension-compression 
combined with monotonic torsion, and (b) cyclic fully 
reversed torsion combined with monotonic tension. 
The mean value of the individual cyclic load 
component is kept zero in all cases.  

For convenience, the ratio c=Sm/Ta of the constant 
nominal normal stress Sm to the nominal shear stress 
amplitude Ta is used to describe the load situation. 
The ratio d=Tm/Sa of the constant nominal shear stress 
Tm and the nominal normal stress amplitude Sa is also 
considered. The nominal equivalent stress Seq is kept 
constant and larger than the value of the material flow 
stress σy in all loading cases. 

Note that the monotonic loading component acts 
first on the notched shaft. When it reaches its pick 
value then the cyclic loading component is applied. 
Therefore, the attained phase difference between the 
two loading components is 90o.  

Z 

Y X 

 
6. Results 

 
Results derived from the finite element analyses 

and the analytical model are discussed in this section. 
For clarity, each result is specified with a code name; 
the first letter refers to the solution method (F for the 
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finite element procedure, A for the analytical 
procedure). The letter “L” follows, denoting loading. 
Next, a number (1 to 10) refers to each one of the ten 
loading cases presented herein.  

The stabilized notch stress-strain curves will be 
considered in the following discussions of the results.  

Figure 4 shows the τyz-γyz results for the loading 
case L2. 

-0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04
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-100

0

100
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300
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γyz 

τ yz
 [N

/m
m

2 ]

 

 

 F-L2
 A-L2

 
Fig. 4. Comparison of the τyz-γyz hystereses 

determined by FE analysis and the analytical 
model for the loading case L2 

 
A very good agreement to both stress and strain 

results can be observed in that loading case as the two 
plotted stabilized τyz-γyz  are almost identical. 

Figure 5 shows the results for the loading cases 
L1 to L6, whereby the influence of the c-value on the 
stress-strain behavior is explored.  
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/m
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2 ]

 

 

 F-L1
 F-L2
 F-L3
 F-L4
 F-L5
 F-L6
 A-L1
 A-L2
 A-L3
 A-L4
 A-L5
 A-L6

Fig. 5. Comparison of τyz-γyz hystereses 
determined by FE analysis and the analytical 

model for the loading cases L1 to L6 
 

Thereby, the value of c increases from 0 (L1) to 
10 (L6). In the cases of c=5 (L5) and c=10 (L6) with 
very low cyclic loads, the calculated plastic 
deformation is approximately zero. Therewith, the τyz-
γyz response is nearly the same and it follows the 
Hooke’s law. For c<1.6, where the shear plastic 
deformation attains significant values, (small) 

discrepancies between the finite element and the 
analytical model’s results occur.  

It must be noticed that the finite element method 
calculates erroneously a radial stress component at 
the notch root. This error results from the stress 
extrapolation from the inner element Gaussian points 
to the corner element nodes. Therefore, according to 
the finite element solution the material shows a stiffer 
attitude because of the presence of the radial stress 
component. Theoretically, no radial stress should 
exist at the very notch root, as correctly assumed in 
the analytical procedure’s formulation. The value of 
this erroneous radial stress component increases with 
increasing plastic deformations. Therewith, the 
observed disagreement between the numerical and the 
analytical results becomes more evident for greater c 
values. 

Figure 6 shows the normal stress-normal strain 
response (σz-εz) at the notch root for loading case L10. 
Herein, the results of the analytical solution as well as 
the ones from two finite element analyses are 
compared. Each finite element solution corresponds 
to a different mesh configuration. The solution 
indicated with the letter “F” in fig. 6 was determined 
with the finite element mesh described in section 4. 
Another coarser mesh configuration has been created 
including only 1360 elements and 6077 nodes, in 
order to explore the effect of the radial stress on the 
finite element results and on the σz-εz path. The letter 
‘C’ in fig. 6 stands for the finite element solution 
where the coarse mesh version is applied.      

0.00 0.01 0.02 0.03 0.04 0.05 0.06
0

100

200

300

400

500

600

σ Ζ
 [N

/m
m

2 ]

Constant Tension-Cyclic Torsion

 

ε
Ζ

 CFL10
   FL10
   AL10

Fig. 6. Comparison of σz-εz hystereses 
determined by FE analyses and the analytical 

model for the loading case L10 
 

A stiffer material response is regarded from the 
finite element solutions compared to the one derived 
from the analytical model. The finite element mesh 
refinement results in a subsequent increase in the 
number of integration points and therefore decreases 
the radial stress component value. That leads to a 
numerical solution where the material yields at lower 
normal stress values according to von Mises yield 
criterion. Nonetheless, the presence of a (erroneous) 
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radial stress component -even in the case of a finer 
mesh- yields results that differ from the ones derived 
from the analytical model.  

The significant differences in the calculated 
normal strain are due to the assumption that the strain 
ratio ε2/ε1 should remain constant throughout the 
whole loading history according to the analytical 
model. This is valid for elastic stress-strain responses 
but not valid in cases where plastic strains are 
prevalent like in the loading cases under study.  

The σz-εz diagram shown in fig. 7 incorporates 
results from the finite element and the analytical 
procedure implementation for several d-values.  
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Fig. 7. Comparison of the σz-εz hystereses 

determined by FE analyses and the analytical 
model for the loading cases L7 to L10 

 
As d increases successively from load case L7 up 

to L10, the observed differences to the calculated 
normal strain become more and more significant. 
This is due to the gradual increase of ε2/ε1 for 
increasing normal load values. This increase becomes 
prominent for the sharp notch investigated here 
because of the notch constraint. 

 
7. Conclusions 

 
An analytical procedure to evaluate the stress-

strain response in notched components under 
synchronous nonproportional loading is assessed 
based on numerical results from finite element 
analyses for a circumferentially notched shaft 
subjected to synchronous non-proportional multiaxial 
fatigue loading consisting of cyclic and static load 
components. The following conclusions can be 
derived from the comparative analyses: 

• A good agreement between the 
analytically and numerically determined shear 
stresses and shear strains has been observed even 
in loading cases with excessive plastic shear 
strain values.  

 
• The application of a finite element mesh 

configuration that includes adequate number of 
nodes with high node density especially nearby 
the notch root is an indispensable prerequisite for 
a reliable finite element solution. 

• The analytical model as far as the normal 
stress – normal strain path monitoring is 
concerned, achieves an acceptable description of 
the notch constraint.  

• Deviations between the analytically and 
numerically calculated normal strains exist due to 
the assumption of a constant ε2/ε1-ratio within the 
framework of the analytical procedure, especially 
in loading cases causing pronounced plastic 
strains.   
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