

THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI. FASCICLE IX. METALLURGY AND MATERIALS SCIENCE N^0 . 1 – 2007, ISSN 1453 – 083X

IMPLICATIONS OF THERMAL AND THERMO CHEMICAL TREATMENTS IN ELECTROLYTIC PLASMA ON THE PHASIC COMPOSITION OF STEELS 40Cr10 and OLC 55

Maria BACIU, Teofana Emilia NECHITA

Technical University "Gh. Asachi" Iaşi email: maria_baciu2004@yahoo.co.uk

ABSTRACT

The X-ray diffraction researches allowed the identification of the phases present in the structure of steels 40Cr10 and OLC 55, treated thermally and thermal-chemically in electrolytic plasma and the calculation of concentration of the structural phases identified.

KEYWORDS: electrolytic plasma, steels, nitration, X-ray diffraction

1. Introduction

The analysis of the phase composition of the steels 40Cr10 and OLC 55, treated thermally and thermal-chemically in electrolytic plasma allows the establishing of a correlation between the technological parameters of the processing methods and the physical-mechanical properties obtained in the end.

The experimental determinations were effectuated by X-ray diffraction, the analysis of diffraction diagrams allowing the identification of phases present in the structure of each sample and the

calculation of the plane spacing d_{hkl} and the phase concentration.

2. Experimental procedure

The experimental researches were effectuated by cylindrical samples $\phi 15 \times 50$ mm, from the steels 40Cr10 and OLC 55, processed thermally by anodic heating in watery electrolytes according to the conditions presented in table 1. The diffraction diagrams were obtained by the device DRON 2, using radiations MoK_{α} and FeK_{α} . The interval analysed is comprised between: $2\theta = 15^{\circ}...40^{\circ}$

Table 1. Technological parameters of thermal and thermal-chemical treatment in electrolytic plasma

No. crt.	Steel type	Sample	Thermal and thermal- chemical treatment applied	Technological parameters of thermal processing
1		3B	nitration + tempering + bluing	$T_{\text{inc}} = 650^{\circ}\text{C}; t_{\text{inc}} = 6 \text{ min}$ $T_{\text{rev}} = 350^{\circ}\text{C}; t_{\text{rev}} = 1 \text{ h}$
2		3D	nitration + tempering	$T_{\text{inc}} = 700^{\circ}\text{C}; t_{\text{inc}} = 6 \text{ min}$
3	40Cr10	3НН	nitration + tempering + bluing	$T_{\text{inc}} = 750^{\circ}\text{C}; t_{\text{inc}} = 6 \text{ min}$ $T_{\text{rev}} = 350^{\circ}\text{C}; t_{\text{rev}} = 1 \text{ h}$
4		3A	nitration + tempering	$T_{\text{inc}} = 650^{\circ}\text{C}$; $t_{\text{inc}} = 6 \text{ min}$ $T_{\text{aust}} = 750^{\circ}\text{C}$
5	OLC 55	4V	nitration + tempering + bluing	$T_{\text{inc}} = 650^{\circ}\text{C}; t_{\text{inc}} = 6 \text{ min}$ $T_{\text{rev}} = 350^{\circ}\text{C}; t_{\text{rev}} = 1 \text{ h}$
6		4DD	nitration + tempering	$T_{inc} = 700$ °C; $t_{inc} = 6 \text{ min}$
7		4MM	nitration + tempering + bluing	$T_{\text{inc}} = 750^{\circ}\text{C}; t_{\text{inc}} = 6 \text{ min}$ $T_{\text{rev}} = 350^{\circ}\text{C}; t_{\text{rev}} = 1 \text{ h}$
8		4Y	nitration + tempering	$T_{\text{inc}} = 650$ °C; $t_{\text{inc}} = 6 \text{ min}$ $T_{\text{aust}} = 750$ °C

THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI. FASCICLE IX. METALLURGY AND MATERIALS SCIENCE N^0 . 1-2007, ISSN 1453-083X

3. Experimental results

In figures 1...8 we present the diffraction diagrams obtained.

On the diffraction diagrams we identify the peaks of high intensity specific to phases and diffraction planes:

- austenite: (111); (200); (220); (311);

- martensite: (110); (200); (211);

- nitrides: Fe₃N.

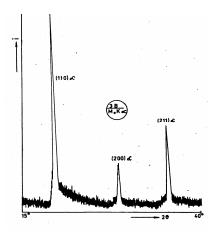
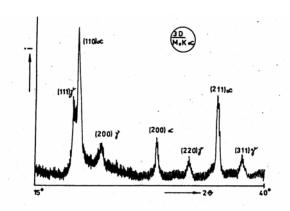



Figure 1. Diffraction diagram of steel 40Cr10 nitrated and tempered in electrolytic plasma and subsequently blued at 350°C in oven – sample 3B.

Figure 2. Diffraction diagram of steel 40Cr10 nitrated and tempered in electrolytic plasma – sample 3D.

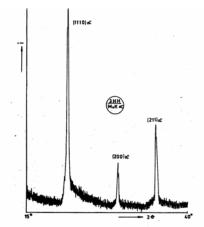


Figure 3. Diffraction diagram of steel 40Cr10 nitrated and tempered in electrolytic plasma and subsequently blued at 350°C in oven – sample 3HH.

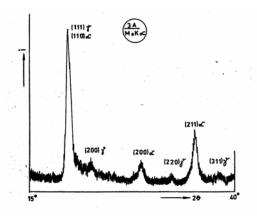
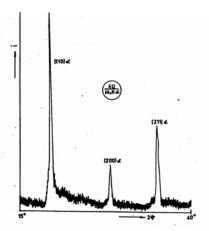
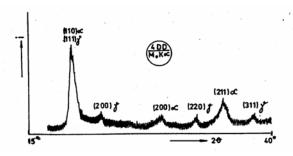
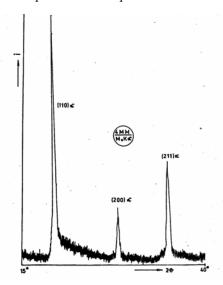


Figure 4. Diffraction diagram of steel 40Cr10 nitrated and tempered in electrolytic plasma – sample 3A.


Figure 5. Diffraction diagram of steel OLC 55 nitrated and tempered in electrolytic plasma and subsequently blued at 350°C in oven – sample 4V.

THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI. FASCICLE IX. METALLURGY AND MATERIALS SCIENCE N^0 . 1-2007, ISSN 1453-083X

Figure 6. Diffraction diagram of steel OLC 55 nitrated and tempered in electrolytic plasma – sample 4DD.

Figure 7. Diffraction diagram of steel OLC 55 nitrated and tempered in electrolytic plasma and subsequently blued at 350°C in oven – sample 4MM.

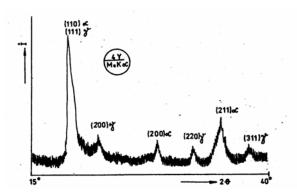


Figure 8. Diffraction diagram of steel OLC 55 nitrated and tempered in electrolytic plasma – sample 4Y.

Table 2. Plane spacing and phase nature presented in the structure of steel 40Cr10 nitrated and tempered in electrolytic plasma and subsequently blued at 350°C in oven – sample 3B

d_{hkl}	Phase	(h k l)
2,053	α	110
1,4378	α	200
1,1646	α	211

Table 3. Plane spacing and phase nature presented in the structure of steel 40Cr10 nitrated and tempered in electrolytic

piasma – sampie 3D					
d_{hkl}	Phase	(h k l)			
2,076	γ	111			
2,024	α	110			
1,8161	γ	200			
1,4364	α	200			
1,2857	γ	220			
1,1763	α	211			
1,0929	γ	311			

Table 4. Plane spacing and phase nature presented in the structure of steel 40Cr10 nitrated and tempered in electrolytic plasma and subsequently blued at 350°C in oven – sample 3HH

	in sample s	1111
d_{hkl}	Phase	(h k l)
2,024	α	110
1,4328	α	200
1,1692	α	211

Table 5. Plane spacing and phase nature presented in the structure of steel 40Cr10 nitrated and tempered in electrolytic

piasma – sampie 3A				
d_{hkl}	Phase	(h k l)		
2,076	α+γ	$110_{\alpha} + 111_{\gamma}$		
2,024	α	110		
1,8161	γ	200		
1,4364	α	200		
1,2857	γ	220		
1,1763	α	211		
1,0929	γ	311		

THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI. FASCICLE IX. METALLURGY AND MATERIALS SCIENCE N^0 . 1 – 2007, ISSN 1453 – 083X

Table 6. Plane spacing and phase nature presented in the structure of steel OLC 55 nitrated and tempered in electrolytic plasma and subsequently blued at 350°C in oven – sample 4V

oven sample iv				
d_{hkl}	Phase	(h k l)		
2,0510	α	110		
1,4369	α	200		
1,1716	α	211		

Table 7. Plane spacing and phase nature presented in the structure of steel OLC 55 nitrated and tempered in electrolytic plasma – sample 4DD

processing to the contract of			
d_{hkl}	Phase	(h k l)	
2,0680	α+γ	$110_{\alpha} + 111_{\gamma}$	
1,8161	α	200	
1,4364	α	200	
1,2800	γ	220	
1,1777	α	211	
1,0908	γ	311	

Table 8. Plane spacing and phase nature presented in the structure of steel OLC 55 nitrated and tempered in electrolytic plasma and subsequently blued at 350°C in oven – sample 4MM

0,0	sumpre n	
d_{hkl}	Phase	(h k l)
2,0580	α	110
1,4443	α	200
1,1739	α	211

Table 9. Plane spacing and phase nature presented in the structure of steel OLC 55 nitrated and tempered in electrolytic

plasma – sample 4Y Phase d_{hkl} (h k l) 2,0686 $110_{\alpha} + 111_{\gamma}$ $\alpha+\gamma$ 1,8278 200 α 1,4400 200 α 1,2800 220 γ 211 1,1787 α 1,0904 311 γ

As for the concentration of the phases present in the structure of the samples investigated, we determined the values presented below table 10.

Table 10. Technological parameters for thermal and thermal-chemical treatment in electrolytic

piasma				
Sample	v _α , [%]	ν _γ , [%]	v _N , [%]	
3B	100	-	-	
3D	78,30	21,70	-	
3НН	100	-	-	
3A	65,80	8,30	25,90	
4V	100	-	-	
4DD	70,30	12,40	17,40	
4MM	100	-	-	
4Y	64,70	14,10	21,20	

4. Conclusions

- 1. The Roentgen structural investigations effectuated pointed out the nature of phases present in the structure of the two steels processed thermally n electrolytic plasma: nitrogen-based martensite (nitromartensite); residual austenite and chemical compounds (nitrites).
- 2. The structural phases identified correspond to the thermal-chemical treatment applied, their concentration being dependent on the two main technological parameters: temperature and diffusion time.

Thus, in the improving steels 40Cr10 and OLC 55 nitrated, we notice a reduction of the nitride quantity once with the increase of the diffusion temperature.

3. The application of bluing in oven after nitration and tempering in electrolytic plasma has as effect the complete transformation of the residual austenite in cubic martensite.

References

- [1]. Baciu, Maria, Contributions on the structural and property changes of thermally and thermochemically treated steels in electrolytic plasma (in Romanian), PhD thesis, "Gh.Asachi" Technical University from Iaşi, 1999.
- [2]. Belkin, P.N, Ignat'kov, D.A., Pasinkovský, E.A., Azotirovanie v elektrolitnoj plazma, Kolloquium Eigensspannungen und Oberflächen-verfestigung, p.265, 1982.
- [3] Belkin, P.N., Pasinkvosky, E.A. Termičeskaâ i himiko termičeskaâ obrabotka stalej pri nagreve v rastvorah elektrolitov, Metallovedenie i termičeskaâ obrabotka metallov, nr.5, pag.12-17, 1989
- [4]. Duradži, V.N., Parsadanian, A.S., Nagrev, metallov v elektrolitnoi plazme (lb. rusă), Ed. Stiinca, Kišinev, 1988.