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ABSTRACT 
 

This paper presents a method for modeling of the rolling process based at the 
deformable continuous medium mechanics, the theory of field lines. The rolling of 
the profiles and plates may be evaluated as the plane strain state process. Using the 
equations of the continuous medium and the initial conditions and the limits 
conditions we solved the speed field, the strain rate field, the strain field. Applying 
an adequate computation program we obtained the values of the field factors of 
modeling process. The results are showed into this paper. 

 
KEYWORDS: rolling process, field lines, continuous medium 

 
1. Introduction The lateral dimension of body (hi-1) is 

appropriated of the dimension b i of the deformation 
form of the rolls. Thus, the strain in this direction 
may be neglected [2]. 

At the rolling of plates and profiles the 
deformation in a direction may be neglected, 
respectively in the lateral direction (Figure 1). 
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Fig. 1 Scheme of profile rolling process and deformation conditions 
 

 
We consider the rolled body as a deformable 

continuous medium. The volume occupied by the 
continuous medium, at the really moment is divided 
in three domains (Figure 2) [2,4,6]: 

- the domain D1 before the entrance of medium 
between the rolls (rigid plastic medium),  
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Consequently the field line equation is: - the domain D2, deformation domain, the 

medium is between the rolls. In this domain is 
developed the deformation process,  
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the rolls (rigid plastic, too). 
                      (4) 

  
2. Defining of the field line equation We admit the hypothesis of the proportional 

repartitions of the deformation to the thickness of 
body. In this condition we have: 
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and (4) becomes [6]: R
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Fig. 2 The deformation domain and field line 

 
In the conditions of a stationary regime of the 

continuous medium flow the field lines coincide to 
the movement trajectories of the material particles. In 
the Figure 2 we represent the field line of the material 
particles that are situated to y0 of the axe Ox, the 
symmetry axe of the body. 

The equations of the current line of parameter y0 
are so defined:  
 
       y = y0 , in D1  yy = 0 , in D1
respectively,                                                           (1) 
       y = ye , in D3 

 
In the deformation domain D2  the field line may 

be expressed by circle arch what satisfy the following 
conditions: 
- circle center is on the axe Oy, the axe of the 

rolling cylinder centers, 
- the circle radius respects the conditions: 
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H is the initial semi-thickness of the body. 

The conditions (2) are accomplished by the 
equation [2]: 
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i is defined by the points of 
coordinates: 
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3. Defining of the speed field 

 
In the D1 and D3 domains we have:  
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In the domain D2 we have the following conditions 
[1,3,5]: 
- the continuity equation to incompressible 

medium  
       0)( =vdiv r

 
 
For plain strain state we have: 
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- the field line equation: 
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v
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From (5), (7) and (8) we obtain: 
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 Then we have:  
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−=                                              (10)        The continuity condition is defined by the 

constant material flux in the long of the field line.  
and We consider the elementary volume in the long 

of the field line (fig.3) [4,6]. 2
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Fig. 3 Scheme for establishing of continuity equation 
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a discontinuity of material particle speed is appeared. 
Thus, we have:   

In this relation we have h x the thickness of the 
body according to coordinate x of the point of the 
field line and v

oot

ooi
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                                   (12) e is the speed of material particle at the 
exit from the deformation domain. 

We have: where 
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        (13) 
and 

h
Hvv ie ⋅=                                                    (16) 

Applying the hypothesis of the plane strain state 
we may write:  

 Using the relations (10), (11), (14 and (15) we 
obtain: eeoi dsvdsvdsv ⋅=⋅=⋅  

 
At the same time having the hypothesis of 

uniform repartition of the deformation on the 
thickness of the body we have: 
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1 4. Defined of the strain rate field 
 

The components of the strain rate tensor are 
defined by equations:  
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                                                              (17) Using the function (17) for the speed 

components we obtain:  
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The strain rate intensity is defined by the relation 
[1]: 
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 and obtain: 
For the numerical calculus we use the following 

normalized coordinates: 
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 The field of strain intensity is defined by the 
expression [4]: For the numerical solve we will use the following 

principle (fig.4):  

∫ ⋅= t dt0εε &                                                  (25) 
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Fig. 4 The calculus scheme of the strain intensity 
 

In this expression the index k is defined in 
function of the index i as  k=n-i, where i is the 
division operator in the long of the field line 
(i=1,2,...,n). 

We defined the time differential as: 
 

xv
dxdt =  

εFor initialization of the values of  we consider 
what at the k=0, respectively, i=n, that is in the point 
of surface Σ

 
The numerical expression of the equation (25) is: 
 i the deformation is defined by the 

rotation of speed vector of angle θ
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Thus the initial strain is:      (26) 
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Using the calculus algorithm described above we 

developed a computation program. The results of the 
calculus program we will present in the future paper. 

 
5. Conclusions 

 
The solving of the deformation process is 

possible using various methods. The field (or flow) 
line is one of these. 

First we must defined clearly the domain that, at 
the real moment, is occupied of the body and the 
initial and limit conditions. The body is considered as 
deformable continuous medium. Then, we must 
define the equation of the flow line. 

Using the equations of the mechanics of the 
deformable continuous medium, applying the initial 
conditions and the conditions at the limits we 
obtained, in the analytical form, the expressions of 
the components of the speed, and, derived by these, 
the components of the strain rate tensor. 

If the components of strain rate tensor are 
defined, that is the field of strain rate tensor is 

defined, we can calculate the strain rate intensity, and 
finally, the strain intensity. Thus the analyze of 
cinematic process is solved. 

From this level we can develop the analyze of 
process dynamic for establishing the data of the 
evaluation of the rolling process. The solving of this 
action we will show in the next paper. 
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