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ABSTRACT 
The objective of this paper is to predict the performance of a rotor bearing 

system, lubricated with couple stress fluid accounting the cross effect of 

velocities. Modified Reynolds equation and the Stokes constitutive equation 

have been obtained. Narrow bearing approximations have been used to 

obtain the solutions in the closed form. The effects of couple stress, frame 

rotation and the viscosity-density effects have been numerically obtained. The 

obtained results are consistent with the physical situation of the problem. 
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INTRODUCTION  

 

Theory of squeeze film has, so far, been playing a very important role in the field of 

engineering, in practical situations, such as lubrication of machine elements, lubrication in 

human body at synovial joints etc., [1, 2, 3]. Thus, a considerable attention has been paid 

on it by scientists and researchers [4], showing that there is a good agreement between the 

theoretical and experimental results for a Newtonian squeeze film behavior, between fixed 

and rotating annulii. Afterwards, a large number of researchers studied and concluded on 

different types of fluids and their behavior as a squeeze film. In 1981, Banerjee et al. [5] 

pointed out that almost all the physical systems are under effect of rotation - though it may 

be very small and they have extended the classical theory of lubrication [6]. Banerjee et al., 

and Gupta et al. [7, 8, 9] have shown that, in certain situations, the qualitative properties of 

the bearing system may be different and they obtained a certain class of fundamental 

solutions of the generalized Reynolds equation, which are not allowed in the classical 

Reynolds theory [6]. In 1987, Gupta et al. [8] elaborated a model to show theoretically the 

effect of small rotations in squeeze film journal bearing and have shown that the obtained 

results are in a good agreement with the practical results. 

On the other hand, the theory of non-Newtonian polar fluids has also been the center 

of attention for the researchers, due to their increasing use in industrial machine elements 

based on the rheological behavior because of the presence of additives, suspensions and 
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long chain polymers. Among the polar fluid theories, the couple stress fluid theory 

developed by Stokes [10], which considers couple stresses in addition to the classical 

Cauchy stress, has been of much interest for the researchers, from a long time. It is the 

generalization of the classical fluid theory, which allows for polar effects, such as the 

presence of couple stresses and body couples. Linear shearing stress and shearing rate 

relationships do not exist for such lubricants. Stokes discussed the fluid theory in detail in 

his treatise [11]. Afterwards, the squeeze film lubrication of couple stress fluid has been 

studied by Lin [12] and Ramanaiah [13] and they observed an increase in load carrying 

capacity.  

Lin [12] has recently investigated the effect of couple stress lubricant on static 

characteristic of a rotor bearing and analyzed the problem under the assumptions of 

negligible shear stress between rotor and bearing system, which, in practice, has a measurable 

effect. Also, the effect of small rotation on the performance of a bearing system cannot be 

overlooked. Therefore, the journal bearing under squeezing film condition along with the 

shearing stress will behave differently and need to be investigated under realistic conditions. 

Hence, in order to investigate the problem under the said realistic physical 

condition, as in the classical theory developed by Reynolds [6] and extended by Banerjee, 

Gupta and Kavita [7, 8, 9] in 1982 and onward, the modified Reynolds equation has been 

obtained, using the microcontinuum theory for lubricants containing substructures [14]. 

The interaction of microcontinuum theory developed by Stokes [10] for lubricants with 

polar effects that is couple stress, body couples and the non-symmetric tensors has been 

used to develop the generalized Reynolds equation. The constitutive equations of an 

incompressible fluid with couple stress and small rotations [10, 15, 16] are: 

0V                     (1) 

2 41
2

2

DV
p F C V V V

Dt
     


     

           
 

  (2) 

where the vectors , ,V F C  and   represent the velocity, the body force per unit mass, the 

body couple per unit mass and the rotation, respectively;   is the density of the fluid, p  is 

the pressure,   is the shear viscosity and   is the new material constant standing for the 

couple stress fluid property. 

 

CONSTITUTIVE EQUATIONS AND BOUNDARY CONDITIONS  

 

The physical configuration of a journal bearing is shown in Fig. 2.1. Consider a 

layer of fluid, which is kept rotating at a constant rate. Let   be the angular velocity of the 

frame rotation about y  axis. The lubricant in the system is taken to be Stokes couple stress 

fluid. The body forces and the body couples are assumed to be absent. Under the 

assumptions of hydrodynamic lubrication, applicable to a thin film, as used by Pinkus and 

Sternlitch [17] and Singh [18], the field equations governing the motion of an 

incompressible fluid given in Cartesian co-ordinate system are: 
2 4
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These equations are solved under the following boundary conditions, for u  and w : 

0u      at  0y   and h     (6) 

2

2

u p

xy

 




  at  0y   and h     (7) 

0w      at  0y   and h     (8) 

2

2

w p

zy

 




 at  0y   and h      (9) 

where u  and w  are the velocity components in x  and z  directions, respectively and h  is 

the film thickness between the journal bearing system. 

 

ANALYSIS  

 

The simplification of equations eq. (30) and eq. (5) gives rise to differential 

equations of order 8, as below: 

 
2 8 6 2 4

8 6 4
2

2 2

u u u p
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  

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           (10) 

 
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  

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       
         

         
           (11) 

that cannot be solved with only four boundary conditions, eqs. (6-7) for u  and eqs. (8-9) 

for w  and, therefore, a schematic iterative technique has been applied to find the solutions 

of the equations (3) and (5) under the boundary conditions (6) through (9), for velocity 

components u  and w . The step-wise procedure is as under. 

 

METHODOLOGY  

 

Step-I  

In the first iterative approximation, the solution for u  and w  is considered as under, 

in which only the second order velocity derivative has been considered while neglecting the 

cross effects: 

 21

2

p
u y yh

x


 


                 (12) 

 21

2

p
w y yh

z


 


                 (13) 

Step-II  

Using the above velocities u  and w  as initial solution, the next iterative solution is 

as under, considering the cross effects along with the second order variation in velocity: 

 
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   (14) 
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  (15) 

which appear to be a better solution than the earlier one. 
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Step-III  

In order to further improve the solution obtained for u  and w , substituting their 

values up to the second order term of velocity, the next improved solution is as: 
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        (17) 

 

3.2 Particular Cases  
 

Case-I  

 If the bearing system consists of a Newtonian fluid  0  , the above said 

solution is identical with Gupta and Banerjee [8], as under: 
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Case-II  

If the bearing system consists of Stokes couple stress fluid, the above solution is 

identical with that presented by Lin [12] as under, up to a good approximation to the usual 

solution obtained by Lin: 
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w

z z



 
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           (21) 

Hence, the developed technique for obtaining the cross effects of this problem under 

the defined boundary conditions is logically and physically correct to a good approximation 

because the direct solution of the equations (3) and (5) cannot be obtained because of the 

lack of additional boundary conditions due to 8-degree partial differential equation in u  

and w . 
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Fig. 2.1. Physical configuration 

 

Now, replacing the velocity components for u  and w  in equations (16) and (17), 

respectively, in the continuity equation (1) and integrating with respect to y  with the 

boundary conditions, equation (22-23) 

0v                  at   0y                           (22) 

dh
v

dt
                   at  y h                  (23) 

the modified Reynolds equation is finally derived in equation (24): 
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      (24) 

Under assumptions of having a short bearing, 
x z

 


 
, the equation (24) reduces 

to: 
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The non-dimensional modified Reynolds equation is obtained as: 
2

2

2
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P P
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                 (26) 

where the superscript * has been dropped for simplicity and 
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3 6

4 2

31 17
sin

10080 120
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l l
 

 
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 
              (28) 

Solving the equation (25) for pressure P , with the condition of zero pressure at the 

bearing ends, i.e. 0P   at 
1

2
Z   , the non-dimensional film pressure is obtained as 

under: 

 
2

1 2
2 2

sinh
2

Bz B
Exp Exp

c c A A
P z

BB B

A

    
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       
  
    

             (29) 

where 
248 cosC                    (30) 

Since the rotational parameter M  is small, ignoring the third and the higher power 

of M  and using narrow journal bearing approximation to calculate the pressure, the 

simplified pressure P  is: 
2

2 3 4
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1 1 1

2 4 3 8 1612
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            (31) 

 

BEARING CHARACTERISTICS  

 

Once the film pressure is determined from equation (31), the bearing characteristics 

can now be obtained as follows: 

1.1. Load capacity : 

The load capacity can be calculated integrating the film pressure acting on the 

journal rotor. The component of load along x (
xW ) and y (

yW ), the perpendicular to the 

center line, and load carrying capacity W  are given by: 

2

0

2

.cos cos

L
z

x

L
z

W W R P dzd

 



  







                   (32) 
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z
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 
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
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
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2 2

x yW W W                   (34) 

where   is the altitude angle, defined by  1tan /y xW W  .     

Taking a non-dimensional load capacity 
2

*

3( / )

WC

d
W

dt R L 
 , the components of 

load carrying capacity in a non-dimensional form can be expressed as: 
1

2
* * *

10
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
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1

2
* * *

10

2

.sin sin

z

y

z

W W P dz d

 


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





                   (36) 

The non-dimensional load capacity *W  can now be evaluated as: 

* *2 *2

x yW W W                   (37) 

 

RESULTS AND DISCUSSION  

 

In this paper, to account the effect of couple stress and frame rotation, a modified 

generalized Reynolds equation is derived. The effects of couple stress and rotation have 

been simultaneously considered for studying the variations of different bearing 

performance properties e.g. pressure, load carrying capacity, friction parameter etc. of the 

bearing system. Earlier researchers [12, 13] have not considered the effect of rotation when 

discussing the effects of couple stress on the bearing performance while Gupta et al. [8] 

considered the rotation in their investigation, but without the couple stress effect. 

In the present study, an emphasis has been made to investigate the problem 

considering the simultaneous effect of small rotation and couple stress together with the 

variation in pressure along the squeezing direction on the performance of a short journal 

bearing. In order to discuss the effect of rotation, a dimensionless parameter M  has been 

introduced [9]. Since M  is a function of the rotation  , the bearing clearance c , the fluid 

density   and the fluid viscosity  , it can be identified as the interaction of the fluid 

property, bearing geometry and bearing performance. For a particular fluid, a small value 

of M may be either due to small rotations or to the small bearing clearance, or both, and a 

larger value of M similarly depends on the rotation as well as on the bearing clearance; but, 

for no rotation, the value of M  is being taken as zero. To study the effect of couple stress, 

the parameter l  - a fluid property dependent has been used. Since l  has dimension of 

length, the dimensionless parameter *( / )l l c  - a fluid and bearing property dependent, 

have been introduced.  
In this process, numerical results have been obtained from the pressure equation 

(31), the load capacity equations (34) to (36), the friction parameter equation (40). Since in 

practice, the length to diameter ratio ( )  of a short journal bearing is preferred to be small, 

the value for   is suitably taken as 0.3 throughout the discussion. The numerical results for 

the bearing properties under discussion have been obtained for couple stress parameter 

* 0.2,0.4,0.6, 1.0l   and eccentricity ratio 0.2, 0.4, 0.6, 0.8  , shown in figures 4.1 to 

4.3 for pressure, figures 4.3 to 4.6 for load capacity, 4.7 and 4.8 for altitude angle and 

figures 4.9 to 4.10 for friction parameter. 
To establish the results for the effect of couple stress, the variation of film pressure 

and load carrying capacity of the bearing due to couple stress, have been discussed without 

rotation. Further, to analyze the performance and behavior of the bearing under small 

rotation, the results have been considered for different values of the rotation parameter M , 

varying from 0 to 0.15. 

Figure 4.1 shows the variation of the normalized pressure  */ lP P   as a 

variation with respect to the circumferential angle θ, varying from 90° to 180° for the 

couple stress parameter * 0.2,0.4,0.6l  , considering the bearing without rotation ( 0)M   

at the mid plane * 0z   and an eccentricity ratio 0.6  . It is observed that the normalized 

pressure  increases with the circumferential angle θ and reaches a maximum at 180o  . 
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The pressure below 90o   has not been considered because of its small value. Moreover, 

the normalized pressure increases with the increase in couple stress at a particular angle  , 

which is consistent to Lin formulation [12]. 

 

 

Fig. 4.1. Variation of Normalized pressure 

pressure as variation of θ for couple stress 

parameter at no rotation 

Fig. 4.2 Variation of Normalized as 

variation of θ for rotation parameter. 

 

Figure 4.2 shows the variation of the relative pressure  */o

mP P   with respect to 

the circumferential angle  , for different values of the rotation parameter M and couple 

stress parameter * 0.2, 0.6l   at * 0z   and an eccentricity ratio 0.6  . It is observed 

that the normalized film pressure is higher for higher values of M and for each nonzero 

value of M , the normalized film pressure is higher in comparison to the case without 

rotation. It is also observed that the effect of rotation is more dominant for lower values of 

*l  and decreases with the increase in the value of *l . 

Figure 4.3 shows the variation of the normalized pressure  */o

mP P   versus the 

dimensionless bearing coordinate  * 4,4z  , for different values of the rotation parameter 

M  and the couple stress parameter *l , at an eccentricity ratio 0.6   and 120o  . 

Again, it is observed that the normalized film pressure is higher for the higher values of M  

whereas the nature of the curves shows the relative variation of the pressure to the pressure 

in absence of rotation because as M  tends to 0, o  tends to 1. 

Figure 4.4 shows the normalized load carrying capacity  */ lW W W  as a function 

of the bearing eccentricity ratio  , for different values of the couple stress parameter 

* 0.2, 0.4, 0.6l  , in the absence of rotation. It is observed that, as a result of increase in 

pressure, the load capacity increases with the increase in couple stress, which agrees with 

the results obtained by Lin [12].  

Figure 4.5 shows the normalized load carrying capacity  */a

MW W W  as a 

function of the eccentricity ratio   for different values of the rotation parameter M  at 

* 0.2, 0.4l  . It is observed that the variation in the load capacity with the rotation follows 
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the same pattern as that of the pressure variation with rotation, as shown in Fig. 4.2. As a 

consequence of the variation of the pressure, the load capacity increases with the increase 

in the value of rotation and for each value of M . Further, the load carrying capacity of the 

bearing is higher than the load capacity when the bearing is operated without rotation. 

 

 
Fig. 4.3. Variation of Normalized pressure 

as variation of Z* for couple stress 

parameter 

Fig. 4.4. Variation of Normalized load 

capacity as variation couple stress 

parameter at no rotation 

 

 
Fig. 4.5 Variation of Normalized load 

capacity as variation of eccentricity ratio 

for rotation parameter 

Fig. 4.6. Variation of Normalized load 

capacity as variation of couple stress 

parameter for rotation parameter 
 

Figure 4.6 shows the normalized load capacity  */a

MW W W  as a function of the 

couple stress parameter *l  for various values of the rotation parameter M , at an 

eccentricity ratio 0.2, 0.4  , respectively. It is observed that, for each value of   and 

*l , the variation of the normalized load capacity with rotation again agrees, the same as 
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discussed earlier. It is also observed, from both the Figures 4.5 and 4.6, that the effect of 

the rotation on the load carrying capacity bearing is more dominant for lower values of *l . 

 

CONCLUSION  

 

In the present theoretical study, the cross effect due to small rotation leads to much 

nearer to the realistic situation in the analysis, as well as its performance. This will increase 

the safety factor while designing such bearings. 

 

NOMENCLATURE BEARING CLEARANCE 

rF  Friction parameter 
f R

c
. 

mr
F   Friction paramete 0M  . 

or
F  Normalized Friction parameter 

m

r

r

F

F
. 

*h  1 cos
h

c
   . 

 Couple stress parameter 



. 

*

 Dimensionless couple stress parameter 

c
 

L  Bearing length. 

M  Frame rotation parameter 

22 c



 
 
 

  

*P  Dimensionless pressure 

2

2 ( / )

Pc

R d dt 

 
 
 

 

P  Dimensionless pressure at 
* 1 . 

MP  Dimensionless pressure at 0M  . 

, o  Normalized pressure; 

*P

P
,  

*

M

P

P
. 

R  Radius of Journal. 

*W  Dimensionless load capacity given  

         by 

2

3 L( / )

Wc

R d dt 

 
 
 

. 

W  Dimensionless load capacity at 
* 1 . 

MW  Dimensionless load capacity at 
0M  . 

W   Normalized load capacity 

*W

W

 
 
 

.  

aW  Normalized load capacity 

*

M

W

W

 
 
 

. 

*z  
z

L
. 

  
e

c
. 

  Material constant for couple stress 

fluid. 

   
2

L

R
. 

  Viscosity of the fluid. 
  Rotational velocity. 
  Density of the fluid. 
  Circumferential angle. 
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