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ABSTRACT 

This document offers a new numerical solution to analyze the transition 

from Hertzian point contact in elastic field to elasto-plastic and full plastic 

contact as function of Brinell Hardeness number, considering uniform Yield 

in subsurface. The method takes into account a slice techniques and surface 

HB value limitations. Results are compared to literature data for Hertz point 

contact and with standard test method for Brinell hardness. 
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1. INTRODUCTION 

 

Literature presents relations between normal contact pressure and subsurface stress for 

elastic contact [1, 2, 3]. The elastic-plastic contact of a sphere and a flat body is a 

fundamental problem in contact mechanics. In this model, the Brinell hardeness sphere is 

higher like the raceway hardness and the stresses remain in the elastic Hertzian contact 

domain. Literature presents different studies to approximate the transition between elastic 

to plastic contact, as for example, references [7, 8, 9]. Reference [6] presents the Brinell test 

method and the imprint parameters under the effect of external load as a function of HB 

number (nHB). The analysis is made using a slice technique method presented in [4, 5]. 

 

2. NUMERICAL FORMULATIONS OF THE LINEAR DEPENDENCE 

BETWEEN LOAD AND THE SLICE CONTACT DEFORMATION IN 

ELASTIC FIELD AND ELASTO-PLASTIC  

 

According to Hertz theory, the link between the maximum central contact pressure P0 

in a point contact and the shear stress τ in subsurface is given as 0P3.0  . If Pm is the 

mean contact pressure in a slice, then Pm5.10P  . Usually, the yield limit as a function of 

Brinell hardness is approximate as nHB7.202  , where nHB is the Brinell Hardness 

number [6]. With these assumptions, it results: 
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when τ=σ02/2 =>P0τ=6.75∙nHB and Pmτ=4.5∙nHB 

when τ=σ02   => P0τ=13.5∙nHB and Pmτ=9.0∙nHB 

(1) 

In the equation (1), Pmτ represents the mean contact pressure, which produces the shear 

stress τ, P0τ is the maximum contact pressure, which produces the shear stress τ. 

According to [4, 5], a slice “j”, from a contact, displaced with () from a real contact, 

can be described with following parameters: 
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In equations (2a)...(2c), the following notations are done: E0 is eqivalent modululs of elasticity 

of the two bodies in contact, it can be Ej (if local inclusions exists in the slice j), kj is the local 

elipticity in the slice; fQ(kj), fb(kj), and fp(kj) are interpolation functions used to create a linear 

dependence of contact relative approach, 
jx  is the length of the slice section “j”, 

j  is the 

local approach corresponding to slice j, 
jQ  is load on slice j. 

Two non-dimensional paramaters were computed using equation (1), as follows: 

fPPm=[(13.5+9)/2]/13.5=0.833 

mPPm=0.5(2/3+fPPm)∙[1….1.03]≈ 0.77 (for metalic material) 

(3) 

According to equations 1, 2 [4, 5] and 3, when the elasto-plastic field materializes, 

then (2a) and (2c) formulas become:  

Q(j)≈2∙b(j) P0 τ Δxj∙mPPm∙f(HB), with f(HB)≈0.96                     (4) 

and P(j)= P0 τ 

 

3. NUMERICAL VALIDATION OF THE PROPOSED MODEL IN THE 

CIRCULAR POINT CONTACT CASE 

 

Equations 2, 3 and 4 are applied in a slice technique method presented in [5]. 

According to [6], a 10.00 mm ball is considered. The contact conformity is modified in 

simulation and a constant load of 3000 kgf is applied. Some different values for nHB are 

considered to show the transition between Hertzian contact and plastic field in Brinell test. 

Six different cases were considered as follows: 

 

Case 1. 100 HB [6] 

If the material is characterized by a hardness of 100 HB, the contact parameters are 

shown in Fig. 1. Figure 1a presents the contact pressure computed with Hertz theory [4, 5] 

and the relations without taking into account the material hardness (nHB) and also the 

proposed model with a HB limit. Figure 1b presents the shape (circle or ellipse) computed 

with Hertz relations, equation (2) from [4, 5], without taking into account the material 

hardness (nHB) and also the shape resulted with the model considering the HB limit of the 

material. Figure 1c presents the shape of local loads in slices, computed with Hertz 

relations, equation (2) from [4, 5], without taking into account the material hardness (HB) 



 

Mechanical Testing and Diagnosis, ISSN 2247 – 9635, 2013 (III), Volume 4, 5-16 

 

7 

and also the load diagram in slices, as resulted from the HB limit of the material. Figure 1d 

presents the shape of indentation in slices as computed from the model proposed to 

consider the material hardness HB. 

 

 
 

a) Contact pressure b) Contact shape 

 
 

c) Load in the contact slice d) Indentation shape 

Fig. 1. 

 

According to [6], Figures 1b and 1d point out that the results have an excellent 

correlation. 

 

Case 2. 400 HB [6] 

If the material has a hardness of 400 HB, the contact parameters are shown in Fig. 

2.1. Fig. 2.1a presents the contact pressure computed with Hertz theory and [4, 5] relations, 

without to take into account the material HB and also the proposed model with HB limit. 

Fig. 2.1b presents the contact shape (circle or ellipse) computed with Hertz relations and 

equation (2) from [4, 5], without taking into account the material HB and also the shape 

resulted with actual model, considering the HB limit of the material. Fig. 2.1c presents the 

shape of loads in slices computed with Hertz relations, equation (2) from [4, 5], without 

taking into account the material hardness HB and also the load diagram in slices, resulted 

with the HB limit of the material. Fig. 2.1d presents the shape of indentation in slices 

computed with the actual model taking into account the material hardness HB. 
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a) Contact pressure 

 

b) Contact shape 

  
c) Load in the contact slice 

 

d) Imprint shape 

Fig. 2.1. 

 

According to [6], the results are in an excellent correlation in Fig 2.1b and Fig 2.1d. 

If the process is repeated for all HB numbers, then the resulted form [6] will be 

retrieved. 

If material has a hardness of 400 HB, two different loads are applied to show the 

algorithm evolutions according to Figure 2.2 (a, b, c, d, e, and f). The load evolution 

contact parameter for 2 different normal loads. Fig 2.2 (a, b, c) corresponds to a normal 

load with 1682 N, when the first point with 13.5 HB local contact pressure appears. Figure 

2.2 (d, e, f) corresponds to a normal load with 20693 N, when many points corresponds to 

limited contact pressure of 13.5 HB (P0τ=13.5∙nHB).  

A comparison between Fig 2.2a and Fig 2.2d, Fig 2.2b and Fig 2.2e and Fig 2.2c and 

Fig 2.2f shows the evolution contact parameters as a function of the external load value, 

when the HB number is considered. 
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1682 N, first point with 13.5 HB 20693 N 

 

 

a) Contact pressure distribution d) Contact pressure distribution 

  

b) Contact zone shape (ellipse or circle) e) Contact zone shape (ellipse or circle) 

  
c) No indentation (elastic field) f) Indentation (elastic-plastic field) 

Fig. 2.2. 

 

Case 3. Continuous transition for 300 HB, example with 0.507 conformity, ball 

diameter of 20 mm 

If we consider a hardness of 300 HB and the specific contact geometry according to 

Fig. 3.1a, then the contact rigidity will result according to Fig. 3.1b. Figure 3.1b shows the 

2 regions which correspond to loads with contact pressure less than 13.5 HB and point with 

elastic-plastic deformations.  

If two different loads are applied, as for example, 51594 N and 74810 N, the contact 

parameters evolutions are according to Fig. 3.2 (a…f). Figures 3.2a, b and c correspond to a 
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load of 51594 N, when the first point with 13.5 HB is revealed. Figures 3.2d, e and f 

correspond to a load of 74810 N, when many points with 13.5 HB exist, with elastic and 

elastic-plastic specifications. 

 

 
 

a) The contact geometry 

 

b) The contact rigidity 

Fig. 3.1. 

 

51594 N, first point with 13.5 HB 74810 N 

 
 

a) Contact pressure 

 

d) Contact pressure 

 

 

b)Contact area e) Contact area 
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c) Final form of the raceway after load f) Final form of the raceway after load 

Fig. 3.2. 

 

Case 4. Continuous transition for 300 HB example for 0.507 conformity, Ball 

diameter 20 mm, rs=2 mm, rd=2 mm, U=44 

Figure 4.1a and b corresponds to the contact geometry: Figure 4.1a presents the 

initial geometry and Fig 4.1b presents the contact region rotated with 44 degrees, which 

corresponds to the contact between a ball and a raceway, at 44 degrees. The two 

parameters, rs and rd, are the rayon radius and are 2 mm each, in this example. 

 

  

a) Initial contact geometry b) Rotated contact region 

Fig. 4.1 

 

To show the contact parameter evolution, two normal loads between a ball and a 

raceway are applied. Figure 4.2a, b, c and d corresponds to a normal load of 11649 N, when 

all points are less of 13.5 HB, and no truncation area contact exists.  

D
p
d

D
m

rd

D
p
d

D
m

rd

D
p
s

rs

rs
rs

+w
-w



 

Mechanical Testing and Diagnosis, ISSN 2247 – 9635, 2013 (III), Volume 4, 5-16 

 

12 

Figure 4.3a, b, c and d corresponds to a normal load of 24618 N, when all points are 

less of 13.5 HB, and truncation area contact exists.  

 

11694 N 

  

a) Contact pressure b) Contact ellipse 

 

 
 

c) Shape of the load repartition d) 0 imprint (elastic field) 

 

Fig. 4.2. 

 

24618 N 

 
 

a) Contact pressure b) Contact ellipse 
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c) Shape of the load repartition d) 0 imprint (elastic field) 

Fig. 4.3 

 

Figure 4.4 (a, b, c and d) corresponds to a load of 43276 N and 53383 N, 

respectively, when points with 13.5 HB exist and a truncation area contact exists, also.  

Figures 4.4a and 4.4b show the contact pressure evolution while Figures 4.4c and d 

show the incipient indentation, in two regions, for 43276 N) and (3 regions with indentation 

under a load of 55383 N, respectively. 

If another contact angle exists, as for example, 53 degrees, then the contact 

parameters will be different, as shown in Case 5. 

 

43276 N – first points with 13.5 HB 53383 N –more points with 13.5 HB 

 
a) Contact pressure 

 
b) Contact pressure 

  
c) Small Indentation areas d) Large indentation areas 

Fig. 4.4. 
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Case 5. Continuous transition for 300 HB example for 0.507 conformity, ball 

diameter of 20 mm, rs=2 mm, rd=2 mm, U=53 

Figure 5.1 a and b corresponds to a contact geometry. Fig. 5.1a presents the initial 

geometry and Fig 5.1b presents the contact region rotated with 53 degrees, which 

corresponds to the contact between a ball and a raceway at 53 degrees. The two parameters, 

rs and rd, are the rayon radius and are 2 mm each, in this example. 

Proceeding in the same manner if a normal load is applied and the contact 

parameters are shown in Fig. 5.2a, b, c and d. In this case, the external load is 45128 N. 

 

 
 

 

a) Initial contact geometry b) Rotated contact region 

Fig. 5.1 
 

Q= 45128 N 

  
a) Contact pressure b) Contact area 

  

c) Load on slices d) Small indentation region 

Fig. 5.2. 
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Case 6. Continuous transition for 300 HB, example for 0.507 conformity, ball 

diameter of 20 mm, rs=2 mm, rd=2 mm, U=18 

Figure 6.1a and b corresponds to a contact geometry. Figure 6.1a presents the initial 

geometry and Fig 6.1b presents the contact region rotated with 18 degrees, which 

corresponds to the contact between a ball and a raceway at 18 degrees. The two parameters 

rs and rd are the rayon radius and are 2 mm each in this example. 

 

  

a) Initial contact geometry b) Rotated contact region 

Fig. 6.1. 

 

When a load of 23756 N is applied, then the contact parameters are shown in Fig. 

6.2a, b, c and d. In this case, a small indentation area will appear. 

 

  
a) Contact pressure b) Contact ellipse parameter 

  
c) Load on slices d) Small indentation area 

Fig. 6.2. 
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When a load of 52377 N is applied, more points with 13.5 HB will appear and the 

contact parameters are shown in Fig. 6.3a, b, c and d, as follows. 

 

  
a) – Contact pressure b) – Contact ellipse 

  
c) – Load on slices d) Indentation zones 

Fig. 6.3. 
 

3. CONCLUSIONS 
 

An new analytic- numeric technique has been developed to simulate the transition form 
Hertzian Contact by elasto-plastic to full plastic contact, using methodology presented in [4, 5]. 
The values from [6] are also obtained. That method can be also used for cutting point contact 
(elastic non-Hertzian contact) for roller and ball bearings. 
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