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Abstract 

This optimization study aims to determine the effect of each input parameter on the output 

parameters, how the input parameters can interact with each other and also it is emphasized the 

determination of the values for the input parameters that optimize the responses. In this study, the 

objective is to obtain an optimal configuration for a resistance structure specific to a 

telecommunications tower. For this purpose, a variable geometric model using design parameters 

is created, based on which a 3D finite element model (FEM) is obtained, which is used in the 

optimization study. The FE model is updated automatically for each version of geometric model 

and is made using beam and shell elements. Design of Experiments (DOE) methodology allows for 

using a mathematical model that predicts how input parameters interact to create output 

responses in an optimization process. Parameters’ correlation and monitoring allow for 

identifying important parameters and the correlation matrix and sensitivity graphs also help 

understanding the parametric relationships. Variation limits for design parameters are defined 

and these parameters can have integer or fractional values.  
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 1. INTRODUCTION 

 

The communication industry has seen a big 

increase nowadays and this is why many towers are 

used to increase the coverage area and network 

performance. In wireless domain, these towers play a 

very important role, hence, failure of such structure is 

a major concern. Thus, a major importance should be 

given in considering extreme conditions in the 

optimization process specific to this type of metallic 

structure. In this study, a four legged lattice tower is 

analyzed and optimized to static and seismic loads.  

An optimization process, which uses the finite 

element method, help to obtain the best design for a 

structure using less resources and that will save a lot 

of money and human efforts.  

In such an optimization process, values of the 

output parameters (deformation, stress etc.) are 

determined, depending on the input parameters 

initially established. Software applications based on 

the finite element method have modules dedicated to 

optimization studies that, for a preliminary analysis of 

a structure, allow for determining independent 

parameters, consequence of solving an optimization 

model, which implies the minimization or 

maximization of objective functions, while restrictions 

of other dependent parameters are imposed. 

 

2. PROBLEM DESCRIPTION 

 

 To perform the constructive optimization study 

for a structure of a metal communications tower, 

which is fixed at the base, free at the top end and it is 

subjected to gravity, wind loads and seismic loads, 

the following categories of optimization parameters 

and restrictions are considered: 

 fixed dimensions: B, T, H, S1, S2, S3, S4 (Fig. 1), 

 input parameters: D1, D2, D3, L1. The first three 

parameters (D1, D2, D3) represent the outer 

diameters of the circular tube sections; the inner 

diameters of the circular tube sections change 

simultaneously with the outer ones and the section 

thicknesses remain constant; the parameter L1 is 

the side length of “L” section (Fig. 2), 

 the diameter of the columns decreases with the 

height and, for this reason, two diameters D1 and 

D2 are defined, 
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 D3 is the diameter of the frames that border the 

shells; the shells have constant thickness, 

 main input parameters (working parameters) are D1 

and L1; the other two input parameters (D2 and 

D3) are defined according to parameter D1, so that, 

when D1 changes its value automatically and the 

other two input parameters change according to the 

expressions of dependency, 

 output parameters:      (equivalent von Mises 

stress),        (total deformation), 

 optimization restrictions:               , 

              ,         (allowable 

maximum stress),           (allowable 

maximum total deformation), 

 objective function: mass minimization. 

3. OBJECTIVES 

 

This study presents, using the finite element 

method, the procedure for performing a dimensional 

optimization study for a given structure as above, 

having as objective function the minimization of 

mass. 

The following dimensions are used in the 

preliminary finite element analysis:  

 fixed dimension: B = 4 m, T = 1.2 m, H = 30 m, 

S1 = 6 m, S2 = 4.5 m, S3 = 6.5 m, S4 = 7 m; 

shells thickness = 20 mm, 

 variable dimensions (input parameters): D1 = 120 

mm, D2 = 110 mm, D3 = 100 mm, L1 = 75 mm. 

 

 
Fig. 1. The fixed dimensions of the structure in view 1  

and the variable elements of the structure in detail views  

 

 
Fig. 2. Input parameters of the structure 
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4. MATERIALS 

 

The material used for the four columns is steel: 

 longitudinal modulus of elasticity (Young’s 

modulus): E = 210000     ⁄ , 

 coefficient of transverse contraction (Poisson's 

coefficient):      , 

 density: ρ = 7850     ⁄ , 

 ambient temperature:       , 

 linear behavior. 

 The material used for all the other components of 

the tower (frames arranged horizontally and 

diagonally, shells) is aluminum alloy: 

 longitudinal modulus of elasticity (Young’s 

modulus): E = 71000     ⁄ , 

 coefficient of transverse contraction (Poisson's 

coefficient):       , 

 density: ρ = 2770     ⁄ , 

 ambient temperature:       , 

 linear behavior. 

 

5. FINITE ELEMENT MODEL 

 

The geometry is not a complicated one, so a good 

quality finite element model is easily obtained: 

• beam and shell element types of second order are 

used 

• size of elements: 150 mm 

• total number of nodes: 15966 

• total number of elements: 5492 

 

6. CALCULATION HYPOTHESES 

 

 The proposed study is carried out in four stages: 

static structural analysis, modal analysis, response 

spectrum analysis and optimization. So, the study is 

based on a suite of three coupled analyzes, based on 

which the optimization process is performed (Fig. 4). 

 

 
Fig. 3. Finite element model 

 

 
Fig. 4. Optimization study scheme 

 



 

Mechanical Testing and Diagnosis, ISSN 2247 – 9635, 2020 (X), Volume 2, pp. 5-13 

 

8 

 

6.1 Static Structural Analysis 

In this study, the role of a static analysis is on the 

one hand to determine the behavior of the structure at 

static loads and, on the other hand, to obtain a 

prestressed structure, which is then studied at 

dynamic seismic demands. 

In this static analysis, the structure is fixed at the 

base, free at the top end and is subjected to gravity 

and wind loads. The wind loads vary with height and 

are applied in the X direction, as shown in Fig. 4. 

Also the structure supports 20 antennas of 10 kg each 

disposed as in Figures 5 and 6. 

 

 
Fig. 5. Boundary conditions and loads 

 

 
Fig. 6. Antennas arrangement 

 

In the deformation process of the unoptimized 

structure model (D1=120 mm, L1=75 mm), as a 

result of the gravity and wind loads actions to which 

are added the masses of the 20 antennas, there is 

observed: 

• maximum total displacement of 42.09 mm (Fig. 7) 

at the top of the structure, 

• maximum equivalent von Mises stress of 71.84 

MPa (Fig. 8) at the bottom of the structure. 

 

Static analysis results for the unoptimized model 

 
 

Fig. 7. Total deformation Fig. 8. Equivalentvon Mises stress 
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6.2 Modal Analysis 

A modal analysis determines the vibration 

characteristics (natural frequencies and mode shapes) 

of the structure. It can also serve as a starting point 

for a dynamic analysis, such as a response spectrum 

analysis, as is the case here. The natural frequencies 

and mode shapes are important parameters in the 

design of a structure for dynamic loading conditions.  

In the modal analysis of the present study, the 

fixing conditions of the structure used in the static 

analysis are taken over, as well as all the output data 

from it. So, a modal analysis with pre-stress is 

performed. 

The first 20 natural frequencies are extracted and 

then these frequencies are input data for spectrum 

analysis. Block Lanczos method was used to extract 

these frequencies. 

The Block Lanczos method is especially powerful 

when searching for eigenfrequencies in a given part 

of the eigenvalue spectrum of a given system. The 

convergence rate of the eigenfrequencies will be 

about the same when extracting modes in the 

midrange and higher end of the spectrum as when 

extracting the lowest modes.  

 

Modal analysis results for the unoptimized model 

 

 
Table 1. The first 20 

natural frequencies 

Fig. 9. Mode shapes 

 

6.3 Response Spectrum Analysis 

Response spectrum analyses are widely used in 

civil structure designs, for example, high-rise 

buildings, nuclear power plants or high metallic 

structures under seismic loads. The results from a 

response spectrum analysis are deterministic 

maxima. For a given excitation, the maximum 

response is calculated based upon the input response 

spectrum and the method used to combine the modal 

responses. The combination methods used in this 

study is the Rosenblueth's Double Sum Combination 

(ROSE) because we have closely-spaced modes 

because the natural frequencies resulting from the 

modal analysis have closely-spaced values and in this 

case the ROSE method is recommended.  

ROSE method is providing a means of evaluating 

modal correlation for the response spectrum analysis. 

Mathematically, the approach is built upon random 

vibration theory assuming a finite duration of white 

noise excitation. The ability to account for the modes 

coupling makes the response estimate from the 

ROSE method more realistic and closer to the exact 

time history solution. 

The excitation is applied in the form of a response 

spectrum. The response spectrum can have 

displacement, velocity or acceleration units. For each 

spectrum value, there is one corresponding 

frequency. Excitation must be applied at fixed 

degrees of freedom. 

Response spectrum is calculated based on modal 

responses. A modal analysis is therefore a 

prerequisite. 

 

 
Fig. 10. Seismic excitation spectrum 

 

The seismic excitation spectrum used is known as 

"Savannah river earthquake" and it is shown in figure 

12. One input excitation spectrum is applied to all 
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boundary condition types defined in the model in the 

X direction, so it is used “single point” spectrum 

type. 

In the deformation process of the unoptimized 

structure model (D1 = 120 mm, L1 = 75 mm) as a 

result of the seismic loads actions to which are added 

pretensioning from static analysis is observed: 

• maximum total displacement of 24.3 mm (Fig. 

11) at the top of the structure 

• maximum equivalent von Mises stress of 45.7 

MPa (Fig. 12) at the bottom of the structure. 

 

Response spectrum analysis results for the unoptimized model 

                     
     Fig. 11. Total deformation Fig. 12. Equivalent von Mises stress 

 

7. OPTIMIZATION PROCESS 

 

It can be observed that the values resulting from 

the analyzes are small and therefore the initial model 

can be can be modified and thus the mass of the 

structure can be greatly reduced. 

The main data used in the optimization process are: 

 input parameters: D1, L1, 

 output parameters:      (equivalent von Mises 

stress),        (total deformation), 

 optimization restrictions:                , 

               ,         (allowable 

maximum stress),           (allowable 

maximum total deformation), 

 the limit values of the input parameters are: 

                          ,       
                  , 

 the optimization restrictions are: allowable 

maximum stress            and allowable 

maximum total deformation              ; 

these allowable values are available for both static 

structural analysis and earthquake analysis, 

 objective function: mass minimization, 

 design of Experiments (DOE) methods used: 

reduced factorial method and response surface 

method, 

 optimization solution algorithm: NLPQL 

(Nonlinear Programming by Quadratic 

Lagrangean), which is based on the gradient 

algorithm for models with only one objective 

function and several optimization restrictions. 

The reduced factorial method can be 

mathematically modeled in several ways. In the 

present study was used a mathematical model known 

as "Central composite design".  

“Central composite design” is a reduced factorial 

experiment of type 2
k
, in which additional 

experimental points are added to the 2
k
 experimental 

points: the central point of the experiment and 2k 

points placed in "star" position at “α” distance 

(sometimes written "alpha" distance) compared to the 

central point, reaching the size of the 2
k
+2k+1 

selection. Because the experimental points are 

symmetrical to the central point of the experiment, it 

is called "central". There are situations where two or 

more experiments are needed in the central point and 

situations when one or two experiments in the center 

are sufficient.    is the number of experiments in the 

center and the total number of experimental points N 

for k factors will be: N=2
k 
+2k+  . The experiments 

at the central point provide information about the 

existence of the response surface curvature. If there is 

a curvature in the system, adding the experimental 
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points placed in "star" position allows the efficient 

estimation of the purely quadratic terms. “Central 

composite design” is defined according to the 

criterion based on which the “α” distance is 

calculated, the most commonly encountered in 

practice being the central composite experiments 

orthogonal and rotatable of the second order. 

Because there are more selections than those strictly 

required for a bilinear interpolation (2
k
), the 

curvature of the experimental space can be estimated. 

The response surface method (MSR) is a group of 

mathematical and statistical techniques that explores 

the relationship between the independent variables 

and the response variable, in order to optimize the 

desired response of the investigated system, to 

explore the optimal operating conditions. The term 

"response surface" is used to describe the surface that 

represents the response of a process or system when 

the values of the input parameters vary in the 

specified fields. 

The first "step" for applying MSR is to determine 

an appropriate function that represents the 

relationship between the output response variable and 

the input variables, a function that is generally 

unknown. If the response of the examined system can 

be sufficiently modeled using a linear function of 

input variables, a so-called first degree model can be 

used. If the answer is more complex, it is used a 

second degree model (a quadratic function) or even a 

combination of the first degree model with the 

second degree model. 

The parameters in the approximation models are 

correctly determined if an experiment is performed 

using an appropriate type of DOE. For many MSR 

studies, the central composite experiment is used, as 

is the case with the present study. As an alternative to 

the central composite experiment method, the Box-

Behnken experiment can be chosen. The latter 

requires lower costs, but should only be used if the 

experiment's borders are assumed to be known. 

Following the solution of the optimization 

analysis and in accordance with the restrictions 

specified above, it is observed that the optimal design 

variant corresponds to the values D1=60 mm and 

L1=60 mm (Table 3). 

 

Table 2. Design of experiments 

Design 
D1 

[mm] 

L1 

[mm] 

Total mass 

[kg] 

Maximum 

equivalent 

von Mises stress 

[MPa] 

(static loads) 

Maximum 

equivalent 

von Mises stress 

[MPa] 

(seismic loads) 

Total 

deformation 

[mm] 

(static loads) 

Total 

deformation 

[mm] 

(seismic loads) 

1 90 62.5 5825.4 94.89 102.42 56.82 25.68 

2 60 62.5 4509.3 119.16 131.52 85.37 26.58 

3 120 62.5 7141.5 76.18 79.52 43.17 24.65 

4 90 50 5673.1 129.17 302.46 58.86 89.76 

5 90 75 5977.6 87.99 68.65 55.49 24.78 

6 60 50 4357.0 252.37 684.37 88.23 121.64 

7 120 50 6989.3 148.97 497.52 44.94 79.77 

8 60 75 4661.5 113.04 125.27 83.65 25.83 

9 120 75 7293.7 71.84 45.70 42.08 24.30 

 

   
Mass variation according to the values 

of the two input parameters (D1 and 

L1) 

Variation of the maximum 

equivalent von Mises stress 

according to the values of the 

two input parameters (D1 and 

L1) due to static loads 

Variation of the maximum 

equivalent von Mises stress 

according to the values of the two 

input parameters (D1 and L1) due 

to seismic loads 

Fig. 13. Response surfaces 
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Table 3. Optimization results 

Optimization objective and parameters 
Candidate 

design 1 

Candidate 

design 2 

Candidate 

design 3 

Objective Total mass [kg] 4477.80 4620.10 5825.40 

Input 

parameters 

D1 [mm] 60 62.89 90 

L1 [mm] 59.91 61.19 62.50 

 

 

 

 

 

Output  

parameters 

Maximum equivalent 

von Mises stress [MPa] 

(static loads) 

134.20 114.67 94.89 

Maximum equivalent 

von Mises stress [MPa] 

(seismic loads) 

148 125.28 102.42 

Total deformation [mm] 

(static loads) 
87.12 76.12 56.82 

Total deformation [mm] 

(seismic loads) 
27.34 26.52 25.68 

 

  

Fig. 14. Initial structure model Fig. 15. Optimized structure model 

 

The results show that the mass of the structure 

resulting from the optimization process is reduced to 

4477.8 Kg (initially having the value of 7293.7 kg). 

Also, the geometric aspect specific to the two 

structure models (initially and optimized) is greatly 

modified (Figures 14 and 15). 

The values corresponding to the maximum 

equivalent von Mises stress (124.13 MPa) due to 

static loads, respectively maximum equivalent von 

Mises stress (150 MPa) due to seismic loads and also 

the values corresponding to the maximum total 

deformation for both cases obtained for the optimized 

model does not endanger the integrity of the 

structure. The authors could say that the mass of the 

structure could be reduced if we increased the 

maximum allowable value of the equivalent von 

Mises stress and total deformation imposed as an 

optimization constraints.  

 If other optimization restrictions are desired then 

the configuration of the optimization analysis must 

be modified and in some cases the input and output 

parameters and the objective function must be 

restored. 

 

8. CONCLUSIONS 

 

In this paper, some of the most important aspects 

of using the finite element method in mechanical 

engineering were presented, emphasizing its 

applicability in the process of optimizing the 

structural components. 

In the development phase of the calculation 

model for optimization, the practical aspects that are 

often difficult to formulate in numerical terms must 

also be considered. Finding a solution is done by the 

design engineer or by other members of the technical 

team based on intuition and experience gained over 

time. 

Optimization techniques have become 

increasingly popular as very useful design tools for 

achieving lightweight, durable and low cost 

structures. Many of these optimization techniques are 

based on the finite element method and the use of 

increasingly efficient computers. This is because, in 

general, optimization studies involve many 

experiments and also the level of refinement of the 

finite element model often requires the use of a high 

performance computer. 
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Also, for efficient modeling it is recommended to 

use some types of finite elements that must first be 

analyzed both theoretically and practically, so that 

their performances can be known and whether or not 

they match the design used in optimization study. 

The use of shape functions, numerical integration as 

well as the calculation of displacements and stresses 

are also important.  

This optimization study was accomplished by 

going through the main stages of a finite element 

optimization analysis, in which the emphasis is 

placed on the modeling and analysis of a structure of 

communications tower which is then dimensional 

optimized. 

The considered optimization model involves the 

use of two geometric parameters as input variables, 

four output parameters limited below the allowable 

values imposed as an optimization constraints and an 

objective function that consists in minimizing the 

structure mass. 

After the optimization analysis was solved, a 

considerable reduction of the structure mass was 

obtained under the conditions where the maximum 

equivalent von Mises stress and total deformation 

increased, but did not exceed the allowable values. 
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