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ABSTRACT 

In order to obtain the required cut quality during the plasma cutting process, the 
particular regularities between the elements of the cutting quality and the process 
input parameters should be explored. This research should take into consideration 
the large number of the significant factors that influence the process output 
parameters. In this paper, the experimental research deals with the investigation of 
the impact of the plasma cutting current, cutting velocity and metal thickness on the 
kerf surface roughness. 

Based on the experimental results, the sets of tests were done in order to 
determine the most favourable Artificial Neural Network structure and architecture. 
The particular Artificial Neural Network process modelling was applied for plasma 
cutting modelling. The results were verified by the simulation of the Artificial Neural 
Network, which was done by the set of data that was not used for the network 
training. The simulation was done for the purpose of verifying the experimental 
results, where the simulated data showed the good agreement with the experimental 
results. 
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1. INTRODUCTION 

 
During the plasma arc cutting, a high quantity of 

energy is focused on the small workpiece area, which 
implies an intense heating of its surface. The energy 
source is the ionized gas, characterized by high 
temperatures and velocities. The gas is ionized by the 
direct current, which is passing from the cathode 
(inside the nozzle) to the anode (the workpiece). 
When the plasma jet reaches the workpiece’s surface, 
the energy used for its ionization is relieved, 
therefore, the material melts. The melted material is 
removed from the cutting area by the kinetic energy 
of the plasma jet. Due to the high temperatures, the 
heat transfer from plasma jet to the material accounts 
for most of the phenomena encountered, 
subsequently: shrinkage, residual stresses, structural 
and metallurgical changes, mechanical deformations, 
chemical modifications, etc. The plasma 
characteristics could be significantly changed, 
therefore controlled by changing the gas type, the gas 
flow, the cutting current, the nozzle size, etc.  

The research of the plasma cutting process is 
usually focused on three separate fields: the 

generation of the plasma arc, the characteristics of the 
plasma jet and the interactions between the plasma jet 
and the material, together with phenomena which 
appear during the process. Most of the papers provide 
a quantitative description of the particular segments of 
the process, but generic models do not exist. The 
approaches depend on the selection of the process 
parameters, such as the gas type, the gas flow, the 
pressure, the distance between the nozzle and the 
workpiece, etc. and the segment of the process to be 
modelled. Extensive literature is also available for the 
assessment of the potential exposure of workers to the 
hazardous substances and the possibility to protect the 
working environment, due to the increasing concerns 
for human health and working conditions. 

The development of Computer Aided Design 
(CAD) initiated the automation of the technological 
process designs and the elimination of its 
presumptions, in order to achieve a high-quality 
plasma cutting that is adaptive to small and large 
production plants. Working together on the 
technology developments, the companies that produce 
CNC machining centres and manufacturers of plasma 
equipment have optimized the machine control units 
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in order to entirely utilise the advantages of speed and 
power of the plasma cutting, while CNC technologies 
enabled a unique maintenance of the cutting quality 
level. Therefore, the plasma cutting machines could 
be adjusted to automatic, whereby the setup time was 
dramatically reduced and almost eliminated the 
human error and so, the work efficiency was simply 
set forward as well as the production time and the 
work quality [1, 2]. Although the automation steps in 
the plasma cutting process appear quite simple, they 
are the result of an intense development of the modern 
technologies. The older plasma cutting systems, as 
well as many modern ones, do not utilise or partially 
utilise the advances of new technologies, and require 
precise manual adjustments in order to produce a 
satisfactory level of the cut quality [3]. 

The research on the Artificial Intelligence 
significantly contributed to the plasma cutting process 
automation. In the last two decades, this research has 
greatly improved the performance of both 
manufacturing systems and services. The complex 
processes, such as the plasma arc cutting, are 
particularly suitable for applying the Artificial 
Intelligence’s methods for its modelling. This paper 
presents the application of one Artificial 
Intelligence’s method - the Artificial Neural Networks 
for the plasma cutting process modelling, using data 
collected during the experimental research, tailored to 
the process modelling needs. 

The relevance of the process modelling highly 
depends on the appropriate selection of the output 
process parameters, which will be modelled, as well 
as the input process parameters, which will be used to 
express the dependent variables in order to predict the 
process parameters. The plasma cutting is 
characterized by the big number of influential 
parameters, due to its complexity [4, 5]. However, for 
the purpose of this research, the selection of process 
parameters was supported by the analysis of the 
available literature and the manufacturers’ manuals, 
as well as the data collected by interviewing the 
plasma cutting machine operators and the supervision 
engineers in the production facility, where the plasma 
cutting machine was located. Therefore, the number 
of the influential parameters was reduced through the 
previously undertaken analysis to three influential 
parameters: the cutting current (I), the cutting speed 
(v) and the material thickness (s). The kerf width was 
selected to be a dependant process variable (output 
process parameter) [6]. 
 

2. EXPERIMENTAL SETUP 
AND METHODOLOGY 

 
The experiment, which provided data for the 

plasma cutting process modelling, was done on CNC 
machine HPm Steel Max 6.25 (produced by the 
Italian manufacturer High Performance Machinery). 
The plasma cutting unit used on this machine was 

Hypertherm HPR130, which can cut the material 
thicknesses up to 38 mm, for stainless steel.  

The workpiece material used for this experiment 
was X10CrNiMn-16-10-2 (EN 10025), with the 
following chemical composition (wt): 0.1% C, 16% 
Cr, 10% Ni and 2% Mn.  

The 99 rectilinear cuts were made by the above 
mentioned plasma cutting machine, varying the input 
parameters (the cutting current, the cutting speed and 
the material thickness) chosen as independent 
variables for the purpose of the process modelling. 
The samples prepared for examination are shown in 
Fig. 1. 

 

 
 

Fig. 1: Samples prepared for examination 
 
Five different workpiece thicknesses were used: 

4 mm, 6 mm, 8 mm, 12 mm and 15 mm. The cutting 
current was 80 A or 120 A, while the cutting speed 
was ranging from 330mm/min to 2,800 mm/ min, 
depending on the material thickness and the chosen 
value of the cutting current. The values of those three 
parameters varied during 99 experiments and the 
samples were prepared for the examination. The kerf 
width, as independent variable in the model, was 
measured by the standard apparatuses. 

3. PLASMA CUTTING 
PROCESS MODELLING 
 
The Artificial Neural Networks represent the 

attempt to form an artificial system based on 
mathematical models, which will be, by its structure, 
function and information processing, similar to the 
biological nervous systems and, thus, able to 
intelligently process the information simulating the 
biological intelligence. The most important capability 
of the Neural Networks is learning on examples and 
the generalization of the problems after training [7, 8, 
9]. For complex processes and systems, such as 
plasma cutting, whose structures and internal 
regularities are unknown, implementation of the black 
box model is appropriate. The input, controlled 
parameters are numerical values, able to be chosen 
and varied freely. In the particular case those 
parameters are: cutting current, cutting speed and 
material thickness. The output parameters (response, 
status characteristics) are values that can be measured 
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or are result of input parameters action, such as kerf 
width, as chosen in this paper.  

A very important step in process modelling 
using Artificial Neural networks is to determine its 
structure and architecture. This will determine the 
ability of the Neural Network to learn and to adapt to 
the particular problem. The Neural Networks are 
composed of a large number of neurons distributed in 
several layers and interconnected, operating in 
parallel. The neurons of the current layer receive data 
from the neurons of the previous layer, process them 
and forward them to the neurons of the next layer. 
The connections between particular neurons in layers 
are characterized by its interconnection weights. The 
network is adjusted, based on a comparison of the 
output and the target, until the network output 
matches the target. Therefore, the basic principles of 
Neural Networks performance show the similarity 
with the performance of the human brain: the ability 
to learn during the training process and the 
interconnection weights that serve for memorizing the 
knowledge. The training of the Neural Network was 
performed by adjusting the values of the connections 
(weights) between elements, so that a particular input 
leads to a specific target output. For training the 
particular network for the kerf modelling, the set of 
data from 68 experiments was used. The software 
application Matlab was used for the network training 
and simulation, particularly its Neural Network 
Toolbox.  

The network has three neurons in the input layer 
(one for each input parameter) and one neuron (for 
one measured output parameter) in the output layer. 
The number of the hidden layers is very important and 
influences the quality of the network output. 
Therefore, in order to select the proper number of the 
hidden layers and its neurons, six Neural Networks 
with a different number of hidden layers and a 
different number of its neurons were trained. 

The following networks were trained: Ns-2, Ns-3, 
Ns1-2 Ns2-2, Ns1-2 Ns2-3, Ns1-3 Ns2-3 and Ns1-3 Ns2-
2. The number following the sign Ns1 represents the 
number of neurons in the first hidden layer, while the 
number following the sign Ns2 represents the number 
of neurons in the second hidden layer. The training 
showed that the most suitable network structure was 
the network containing one hidden layer with three 
neurons Ns-3, as represented in Fig. 2.  

 

 
Fig. 2: A schematic representation of the selected 

Neural Network 

The chosen Neural Network Ns-3 was a back-
propagation network with forward data processing. 
The training process was supervised learning. 
Levenberg–Marquardt method with momentum was 
selected as a learning algorithm (the adoption learning 
function), which is assumed as the fastest for medium 
sized networks. This function proved the fastest 
convergence to the solution as compared to the other 
learning algorithms. The mean squared error, which 
should be reached during Neural Network training, 
was used as a criterion for optimization of 
interconnection weights. For the presented algorithm, 
it is commonly to choose the sigmoid transfer 
functions for all neurons in the hidden layer. The 
neurons in output layer had a linear activation 
function, which allows the network to generate output 
values outside the range +1 and - 1. 

After the training, the network Ns-3 was 
simulated with the set of data from 32 experiments, 
which were not used for the network training. The 
selection of these data samples was carried out by a 
random number method. After the simulation of the 
previously trained network, these data were compared 
to the experimental results for the same experiments. 
Figure 3 presents the plotted experimental and 
network simulation results, with respect to the 
reference number of the experiment. 

 
Fig. 3: The plotted experimental and the network 

simulation results 
 
Figure 4 presents the comparison between the 

experimental values and the values obtained by the 
simulation of the previously trained network. The red 
line represents the best linear approximation of these 
data, whose equation is presented above the figure. 

The dashed blue line represents the line that is 
angled at 45 degrees, for comparison purposes. The 
correlation coefficient was also calculated and 
amounts to 0.983, which is very close to 1. The 
average network error for the random data sample is 
3.13%. However, besides the average error, the 
knowledge of the maximum and minimum errors is 
important. Therefore, the maximum error was 10.9%, 
while the minimum error was 0.01%. These results 
prove the good agreement between experimental 
results and the data obtained by the network 
simulation. 
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Fig.  4: Comparison between the experimental values 

and the values obtained by the network simulation 
 
4. CONCLUSIONS 
 

The results presented in this paper indicate the high 
potential of Artificial Neural Networks as a tool for 
empirical modelling of the plasma cutting process. 
The good agreement between experimental data and 
the modelled ones was obtained. The particular 
Neural Network Ns-3 represents the adequate plasma 
cutting model, while the generated output parameter 
(the kerf width) complies with the practical 
requirements at the satisfactory level. However, the 
network could be additionally improved by selecting 
the particular sets of input-output data for its training. 
Also, when the data generated by Neural Network 
shows a discrepancy with the experimental data, the 
experiment should be repeated for the particular 
number of experiment.  
 

On the other hand, the Artificial Neural Network 
performance could be continually improved by 
additional data samples from direct manufacturing. 
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