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ABSTRACT 

The paper describes a method of computation for the 3-D potential flow past an 
immersed body. The hidrodynamic model is obtained by superposing a horizontal 
stream and a vertical stream over the flow generated by more vertical surfaces of 
linear sources yielding in horizontal planes and set in the vertical symetry plane of 
the immersed body. Then the model is applied for a 3D potential flow over an 
ellipsoid. 
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1. The Theoretical Model 
 
Let us consider a vertical surface of linear 

sources set between the abscisaes a and b in the 
vertical plane Oxz of the Cartezian Oxyz system 
(see Fig.1). Each linear source yields in a 
horizontal plane and has a variable flow rate 

depending  on an unknown law  
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where q(z) is the specific flow rate(on unit of 
length). 

We consider the next complex potential in a 
horizontal plane at a certain level z [1] : 

Fig. 1 
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where  1,  iiyx  

The components x  and y  of the fluid 

velocity at a certain z-level are: 
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where 
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We superpose over the vertical surface of 
linear sources a vertical stream along Oz  direction 
(set in the xOz plane ), for the time being unknown, 

having a velocity ),,( zyxzz    and an axial 

stream along Ox direction (also set in the xOz 

plane),  having a constant velocity 0 . 

The resulted velocity field is [1]: 
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     ),,( zyxzz    
Considering an incompressible fluid and a potential flow, the velocity field has to be solenoidal and 

irrotational , this means it has to satisfy the equations: 
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By replacing eq.(4) in eq.(5) we obtain: 
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or, if working out the partial derivatives,  
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hence,  
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This means, 

),,( zyxzz            (8) 

By replacing eq.(4) in eq.(6) we obtain : 
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The satisfying of eq.(11) is to stated at once and eq.(9) and (10) become 

    dz

zdq

ybx

y

yax

y

y
z )(

arcsinarcsin
2

1
2222 























  (9’) 



FASCICLE V                                          THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALAŢI 
 

 29

 
  dz

zdq

ybx

yax

x
z )(

ln
2

1
22

22











     (10’) 

By partially integrating the eq.(9’) in respect of y, we obtain: 
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The function ),('
1 zxC  can be found by replancing the velocity z  as given by eq.(12)into eq.(10’). 

Thus 
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There results the following expression for the velocity z  from eq.(12) and (13) : 
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There is to be notice that eq.(14) reduces to the form 
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for a=b. 

As z  doesn’t depend on z (because 0 zz ), we deduce that  

constCzC  '
1
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and so eq.(14) can be reduced to the form : 
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Differentiating eq.(17) in respect of z and taking into account that 0 zz , we obtain: 
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equivalent to  

32)( CzCzq                                   (19) 

Considering eq.(19), eq.(17) will be rewritten under the form  
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Considering eq.(19) and (20), we can rewrite eq.(4) as 
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2. The Formulation of the 3-D Potential 
Flow past an Immersed Body 
 

We consider the above mentioned model for 
the computation of incompressible three-
dimensional potential flow past an immersed 
ellipsoid. 

Let n vertical surfaces of linear sources, of 
unknown specific flow rates iii CzCQ 32  , 

i=1,2,..,n, yielding in horizontal planes and set in 
the vertical simetry plane of an ellipsoid (see Fig.2) 

For the computation of the velocity in a 
certain point of the surfaces of the ellipsoid, 
considering the Cartezian system from Fig.2 x 

becomes ix   and eq.(21) becomes: 
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Fig. 2 

where 



n

i
iCC

1

'
11  can be taken as a unique 

constant. 

There are 2n+1 unknowns ii CC 32 , , 

(i=1,2,..n) and 1C . In order to fiind these unknowns 

which give the law of variation for the specific flow 

rates iii CCq 32  , we consider the condition 

0


jjn  , j=1,2,..,p, where p is the complete 

number of points which numerically defines the 
surface of the ellipsoid. 

There results a linear system of p equation 
with 2n+1 unknowns. To obtain a determined 
system we choose the number of vertical sources 
with respect to the condition  p=2n+1 (p must be 
odd) . Hence, n=(p-1)/2. 
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