# SURFACE PROFILING METHOD OF THE DISK CUTTER OF THE FEMALE ROTOR FROM THE SCREW COMPRESSOR COMPONENT 

Camelia Popa, Virgil Teodor, Ionuț Popa, Nicolae Oancea<br>"Dunărea de Jos" University of Galați<br>virgil.teodor@ugal.ro


#### Abstract

The screw compressor rotors are bounded by cylindrical helical surfaces, with constant pitch. The generation of these surfaces is possible to be done using disk cutter, whose peripheral surfaces are revolution surfaces.

This paper proposes a method and an algorithm for profiling primary surfaces of the disk cutter, mutually enveloping with the helical surfaces of the rotor of the screw compressor.

The algorithm proposes the substitution of the transverse profiles of the rotor by Bézier polynomials.


KEYWORDS: helical surfaces, Bézier polynomial, meshing surfaces, disk cutter

## 1. Introduction

The profiling problem of disk cutter, tools bounded with revolution surfaces, is according to fundamental theorems of enveloping surfaces.

In some situations, such as screw compressor rotors, due to the complexity of the shape and of the parametric equations, the shape to be obtained is difficult to handle.

The frontal profile of the rotors to be generated using the rack generating, can be realized by the envelope method.

## 2. The profile generation of the disk cutter

The helical surfaces of screw compressors, male and female, are cylindrical helical surfaces with constant pitch.

Generating these types of surfaces is achieved by milling (grinding) with tools bounded by surfaces of revolution like disk cutter type, Figure 1.

Coordinates systems are defined:

- $X Y Z$ is the relative system to which is defined the surface of the helicoidal lobe to be generated ( Z axis superposed to the rotor axis $\overrightarrow{\mathrm{V}}$ );
- $X_{s} Y_{s} Z_{s}$ - global system associated to disk cutter ( $Z_{s}$ axis superposed of the disc cutter axis $\vec{A}$ ).

The axes $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{V}}$ admit as common perpendicular the axis $\mathrm{X}\left(\mathrm{X}_{\mathrm{s}}\right)$. The distance between the two axes, $\overrightarrow{\mathrm{V}}$ and $\overrightarrow{\mathrm{A}}$, is denoted by $a$.

It is also noted $\alpha$ the angle between the axes $Z$ and $Z_{s}$, see Figure 1.

Kinematics generation process involves the following movements:

- I, II - the movement of the helical screw workpiece to be generated, defined by helical parameter $p_{l}$ and axis $\overrightarrow{\mathrm{V}}$, for the male rotor (right helix), respectively, $p_{2}$ female rotor (left helix);
- III - the rotation of disk cutter (cutting movement).

The peripheral surface of the disk cutter is determined as an envelope to each helical rotor to be generated.

The helical surfaces of the female rotor can be known by:

- direct measurement of the points on the generator, performed on a 3D measuring machine, if there is a physical rotor;
- the analytical forms of the rotor composite generator;
-the substitution of the generators rotor, in cross section, by Bézier polynomials of inferior degree, generated through a known small number of points (3 or 4 points).


## 3. Helical surfaces of the female rotor lobes

It is considered that the transverse profile of rotors is the result of enveloping with generating rack (the shape of the generating rack satisfies the specific requirements of a screw compressor rotor
construction: no singular points on the profile, asymmetry of the profile generator, meshing line closed and with minimum length).


Fig. 1. The relative position of the rotor and disk cutter to be generated

In Figure 2, is given the shape of the transverse profile of the generating rack, whose envelope is the cross section of the screw compressor rotors.

The selection of the generating rack should lead to forms in cross sections of the screw compressor rotor capable to ensure:

- a pronounced asymmetry of the profile shape in order to obtain a satisfactory flow [9];
- a closed meshing line between the compressor rotors in order to ensure the sealing in the compression chambers [9];
- a volume embedded between rotor lobes as low as possible;
- the absence of singular points on the transverse profiles;
- a better processing of the screw compressor rotors, by providing tools for generating profiles without discontinuities [8].

To define a complex profile of the generating rack, which consists of a basic set of profiles, see Table 1.


Fig. 2. Crossing profile of the generating rack for generation of the female rotor

## - Determination of transverse profile of the female rotor

Crossing profile of female rotor is presented in Table 1.

Knowing the profile equations as transverse profile of the female rotor surface, can be determined the equations of the rotor lobes flanks, and hence, using one of the fundamental theorems of the enveloping surfaces [1], [2], [3] we can get the profile disk cutter to generate the gap between two successive lobes of the rotor.

However, we can imagine a solution based on tangents method [4], for which, the problem may be easier to apply.
-The shape of the helical surface substitute for female rotor

It is considered that the helical surface of the screw rotor compressor can be described as a set of cylindrical helical surfaces and constant step, knowing the cross section of the rotor.

Thus, giving the coordinates of a cross section of the female rotor in the form:

$$
G=\left\|\begin{array}{ll}
X_{2_{1}} & Y_{2_{1}}  \tag{1}\\
X_{2_{2}} & Y_{2_{2}} \\
\vdots & \vdots \\
X_{2_{n}} & Y_{2_{n}}
\end{array}\right\|,
$$

$n$ is large enough.

Table 1. The analytical model of crossing profile of the female rotor

| Sg. | Family of profiles | Meshing condition | Var. param. |
| :---: | :---: | :---: | :---: |
| $\overparen{A B}$ | $\left\{\begin{array}{l} \mathrm{X}_{2}=\mathrm{R}_{0} \cos \left(\psi+\varphi_{2}\right)-\left(\mathrm{R}_{\mathrm{r}_{2}}+\mathrm{c}_{0}\right) \cdot \cos \varphi_{2}- \\ -\mathrm{R}_{\mathrm{r}_{2}} \cdot \varphi_{2} \cdot \sin \varphi_{2} ; \\ \mathrm{Y}_{2}=-\mathrm{R}_{0} \sin \left(\psi+\varphi_{2}\right)+\left(\mathrm{R}_{\mathrm{r}_{2}}+\mathrm{c}_{0}\right) \cdot \sin \varphi_{2}- \\ -\mathrm{R}_{\mathrm{r}_{2}} \cdot \varphi_{2} \cdot \cos \varphi_{2} ; \end{array}\right.$ | $\varphi_{2}=-\frac{\mathrm{c}_{0}}{\mathrm{R}_{\mathrm{r} 2}} \operatorname{tg} \psi$ | $\begin{gathered} \psi_{\min }=0 ; \\ \psi_{\max }= \end{gathered}$ <br> constructive |
| $\overline{\mathrm{BC}}$ | $\left\{\begin{array}{l} \mathrm{X}_{2}=-\mathrm{u} \sin \left(\varphi_{2}+\psi_{\max }\right)+\left(\xi_{\mathrm{B}}-\mathrm{R}_{\mathrm{r}_{2}}\right) \cdot \cos \varphi_{2}+ \\ +\left(\eta_{\mathrm{B}}-\mathrm{R}_{\mathrm{r} 2} \cdot \varphi_{2}\right) \cdot \sin \varphi_{2} ; \\ \mathrm{Y}_{2}=-\mathrm{ucos}\left(\varphi_{2}+\psi_{\max }\right)-\left(\xi_{\mathrm{B}}-\mathrm{R}_{\mathrm{r}_{2}}\right) \cdot \sin \varphi_{2}+ \\ +\left(\eta_{\mathrm{B}}+\mathrm{R}_{\mathrm{r} 2} \cdot \varphi_{2}\right) \cdot \cos \varphi_{2} ; \end{array}\right.$ | $\begin{aligned} & \varphi_{2}=\frac{-\frac{\mathrm{u}}{\cos \psi_{\max }}+\xi_{\mathrm{B}} \cdot \operatorname{tg} \psi_{\max }}{\mathrm{R}_{\mathrm{r}_{2}}}- \\ & -\frac{\eta_{\mathrm{B}}}{\mathrm{R}_{\mathrm{r}_{2}}} \end{aligned}$ | $\begin{gathered} \mathrm{u}_{\min }=0 ; \\ \mathrm{u}_{\max }= \\ \text { determined } \\ \beta=\frac{\pi}{2}-\psi_{\max } \end{gathered}$ |
| $\overparen{C D}$ | $\left\{\begin{array}{l} \mathrm{X}_{2}=-\mathrm{r}_{0} \cos \left(v+\varphi_{2}\right)+\left(-\mathrm{R}_{\mathrm{r}_{2}}+\xi_{0_{1}}\right) \cdot \cos \varphi_{2}+ \\ +\left(-\mathrm{R}_{\mathrm{r}_{2}} \cdot \varphi_{2}+\eta_{0_{1}}\right) \cdot \sin \varphi_{2} ; \\ \mathrm{Y}_{2}=\mathrm{r}_{0} \sin \left(v+\varphi_{2}\right)-\left(-\mathrm{R}_{\mathrm{r}_{2}}+\xi_{0_{1}}\right) \cdot \sin \varphi_{2}+ \\ +\left(-\mathrm{R}_{\mathrm{r}_{2}} \cdot \varphi_{2}+\eta_{0_{1}}\right) \cdot \cos \varphi_{2} ; \end{array}\right.$ | $\varphi_{2}=\frac{\xi_{0_{1}} \cdot \operatorname{tg} v+\eta_{0_{1}}}{R_{r_{2}}}$ | $\begin{gathered} v_{\min }=0 ; \\ =\frac{\pi}{2}-\beta \end{gathered}$ |
| $\widehat{\text { EF }}$ | $\left\{\begin{array}{l} X_{2}=-r_{0} \cdot \cos \left(v_{1}-\varphi_{2}\right)+\left(-R_{r_{2}}+\xi_{0_{2}}\right) \cdot \cos \varphi_{2}+ \\ +\left(-R_{r 2} \cdot \varphi_{2}+\eta_{0}\right) \cdot \sin \varphi_{2} ; \\ Y_{2}=-r_{0} \cdot \sin \left(v_{1}-\varphi_{2}\right)-\left(-R_{r_{2}}+\xi_{0}\right) \cdot \sin \varphi_{2}+ \\ +\left(-R_{r 2} \cdot \varphi_{2}-\eta_{0_{2}}\right) \cdot \cos \varphi_{2} ; \end{array}\right.$ | $\varphi_{2}=\frac{\xi_{0_{2}} \cdot \operatorname{tg} v_{1}+\eta_{0_{2}}}{\mathrm{R}_{\mathrm{r}_{2}}}$ | $\begin{gathered} v_{1 \min }=0 ; \\ =\frac{\pi}{2}-\beta_{1} \\ v_{1 \max } \end{gathered}$ |
| $\overline{\mathrm{FG}}$ | $\left\{\begin{array}{l} \mathrm{X}_{2}=\mathrm{u}_{1} \cdot \cos \left(\varphi_{2}+\beta_{1}\right)+\left(\xi_{\mathrm{F}}-\mathrm{R}_{\mathrm{r}_{2}}\right) \cdot \cos \varphi_{2}+ \\ +\left(\eta_{\mathrm{F}}-\mathrm{R}_{\mathrm{r}_{2}} \cdot \varphi_{2}\right) \cdot \sin \varphi_{2} ; \\ \mathrm{Y}_{2}=-\mathrm{u}_{1} \cdot \cos \left(\varphi_{2}+\beta_{1}\right)-\left(\xi_{\mathrm{F}}-\mathrm{R}_{\mathrm{r}_{2}}\right) \cdot \sin \varphi_{2}+ \\ +\left(\eta_{\mathrm{F}}-\mathrm{R}_{\mathrm{r}_{2}} \cdot \varphi_{2}\right) \cdot \cos \varphi_{2} ; \end{array}\right.$ | $\varphi_{2}=\frac{-\frac{\mathrm{u}_{1}}{\sin \beta_{1}}+\xi_{\mathrm{F}} \cdot \operatorname{ctg} \beta_{1}+\eta_{\mathrm{F}}}{\mathrm{R}_{\mathrm{r}_{2}}}$ | $\begin{gathered} \mathrm{u}_{1 \min }=0 \\ \mathrm{u}_{1 \max }=\text { determ. } \end{gathered}$ |
| $\overparen{A H}$ | $\left\{\begin{array}{l} \mathrm{X}_{2}=\left(\xi\left(\lambda_{1}\right)+\mathrm{R}_{\mathrm{r}_{2}}\right) \cdot \cos \varphi_{2}- \\ -\left(\eta\left(\lambda_{1}\right)-\mathrm{R}_{\mathrm{r} 2} \cdot \varphi_{2}\right) \cdot \sin \varphi_{2} \\ \mathrm{Y}_{2}=-\left(\xi\left(\lambda_{1}\right)-\mathrm{R}_{\mathrm{r} 2}\right) \cdot \sin \varphi_{2}+ \\ +\left(\eta\left(\lambda_{1}\right)-\mathrm{R}_{\mathrm{r} 2} \cdot \varphi_{2}\right) \cdot \cos \varphi_{2} \end{array}\right.$ | $\frac{\dot{\mathrm{x}}_{2_{\lambda}}}{\dot{\mathrm{X}}_{2_{\varphi_{2}}}}=\frac{\dot{\mathrm{Y}}_{2 \lambda_{1}}}{\dot{\mathrm{Y}}_{2_{\varphi_{2}}}}$ | $0 \leq \lambda_{1} \leq 1$ |
| $\widetilde{\mathrm{GH}}$ | $\left\{\begin{array}{l} \mathrm{X}_{2}=\left(\xi\left(\lambda_{2}\right)+\mathrm{R}_{\mathrm{r}_{2}}\right) \cdot \cos \varphi_{2}- \\ -\left(\eta\left(\lambda_{2}\right)-\mathrm{R}_{\mathrm{r} 2} \cdot \varphi_{2}\right) \cdot \sin \varphi_{2} \\ \mathrm{Y}_{2}=-\left(\xi\left(\lambda_{2}\right)-\mathrm{R}_{\mathrm{r} 2}\right) \cdot \sin \varphi_{2}+ \\ +\left(\eta\left(\lambda_{2}\right)-\mathrm{R}_{\mathrm{r} 2} \cdot \varphi_{2}\right) \cdot \cos \varphi_{2} \end{array}\right.$ | $\frac{\dot{\mathrm{x}}_{\lambda_{2}}}{\dot{\mathrm{X}}_{2_{\varphi_{2}}}}=\frac{\dot{\mathrm{Y}}_{2_{\lambda_{2}}}}{\dot{\mathrm{Y}}_{2_{\varphi_{2}}}}$ | $0 \leq \lambda_{2} \leq 1$ |

Two adjacent points, the distance $d s$ :

$$
\mathrm{ds}=\sqrt{\left(\mathrm{X}_{2 \mathrm{i}+1}-\mathrm{X}_{2 \mathrm{i}}\right)^{2}+\left(\mathrm{Y}_{2 \mathrm{i}+1}-\mathrm{Y}_{2 \mathrm{i}}\right)^{2}} \leq \varepsilon, \text { (2) }
$$

if $d s$ is sufficiently small, $\varepsilon=1 \cdot 10^{-2} \ldots 1 \cdot 10^{-1}$, is obtained:

$$
\begin{equation*}
\operatorname{tg} \beta_{\mathrm{i}}=\frac{\left|\mathrm{Y}_{2 \mathrm{i}+1}-\mathrm{Y}_{2 \mathrm{i}}\right|}{\left|\mathrm{X}_{2 \mathrm{i}+1}-\mathrm{X}_{2 \mathrm{i}}\right|} \tag{3}
\end{equation*}
$$

elementary segment slope determined by points $M_{i}\left\lfloor X_{2_{i}}, Y_{2_{i}}\right\rfloor$ and $M_{i+1}\left\lfloor X_{2_{i+1}}, Y_{2_{i+1}}\right\rfloor$,
see Figure 3.


Fig. 3. Elementary helical surface; coordinates systems

Thus, elementary segment $\mathrm{M}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}+1}$ is described by equations as follows:

$$
\mathrm{M}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}+1} \left\lvert\, \begin{align*}
& \mathrm{X}_{2}=\mathrm{X}_{2 \mathrm{i}}+\lambda \cdot \cos \beta_{\mathrm{i}}  \tag{4}\\
& \mathrm{Y}_{2}=\mathrm{Y}_{2 \mathrm{i}}+\lambda \cdot \sin \beta_{\mathrm{i}},
\end{align*}\right.
$$

$\lambda_{\text {min }}=0 ; \lambda_{\text {max }}=\mathrm{ds}$, see (4).
The segment $M_{i} M_{i+1}$ tangent has the follow director parameters:

$$
\begin{equation*}
\overrightarrow{\mathrm{T}}_{\mathrm{M}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}+1}}=\cos \beta_{\mathrm{i}} \cdot \overrightarrow{\mathrm{i}}+\sin \beta_{\mathrm{i}} \cdot \overrightarrow{\mathrm{j}} \tag{5}
\end{equation*}
$$

After replacement we obtain:

$$
\overrightarrow{\mathrm{N}}_{\Sigma}=\left\lvert\, \begin{gathered}
\overrightarrow{\mathrm{i}} \\
-\mathrm{X}_{2 \mathrm{i}} \sin \theta_{2}-\mathrm{Y}_{2 \mathrm{i}} \cos \theta_{2} \\
\cos \beta_{\mathrm{i}}
\end{gathered}\right.
$$

or, the vectorial form, (11),

$$
\begin{align*}
& \overrightarrow{\mathrm{N}}_{\Sigma}= \mathrm{N}_{\mathrm{X}_{2}} \overrightarrow{\mathrm{i}}+\mathrm{N}_{\mathrm{Y}_{2}} \overrightarrow{\mathrm{j}}+\mathrm{N}_{\mathrm{Z}_{2}} \overrightarrow{\mathrm{k}} \\
&\left\{\begin{array}{l}
\mathrm{N}_{\mathrm{X}_{2}}=\mathrm{p}_{2} \sin \beta_{\mathrm{i}} ; \\
\mathrm{N}_{\mathrm{Y}_{2}}=-\mathrm{p}_{2} \cos \beta_{\mathrm{i}} ; \\
\mathrm{N}_{\mathrm{Z}_{2}}=\sin \beta_{\mathrm{i}}\left[-\mathrm{X}_{2 \mathrm{i}} \sin \theta_{2}-\mathrm{Y}_{2 \mathrm{i}} \cos \theta_{2}\right]-\cos \beta_{\mathrm{i}}\left[\mathrm{X}_{2 \mathrm{i}} \cos \theta_{2}-\mathrm{Y}_{2 \mathrm{i}} \sin \theta_{2}\right] .
\end{array}\right. \tag{14}
\end{align*}
$$

Knowing the expression of the director parameters of elementary helical surface (14), we can write the meshing condition, Nikolaev [2].

We define:
-the disk cutter axis $\overrightarrow{\mathrm{A}}$,

$$
\begin{align*}
& \quad \overrightarrow{\mathrm{A}}=\sin \alpha \cdot \overrightarrow{\mathrm{j}}+\cos \alpha \cdot \overrightarrow{\mathrm{k}}  \tag{15}\\
& \text { - vector } \mathrm{O}_{2 \mathrm{~S}}  \tag{18}\\
& \mathrm{OO}_{1}=\mathrm{a} \cdot \overrightarrow{\mathrm{i}}
\end{align*}
$$

$$
\text { The amount } 0
$$ defined, that the axis $\overrightarrow{\mathrm{A}}$ is perpendicular to the outside helix female rotor, ( $\mathrm{De}_{2}$ ), Figure 3:

$$
\begin{equation*}
\tan \alpha=\frac{2 \pi \mathrm{p}_{2}}{\pi \mathrm{D}_{\mathrm{e}_{2}}}=\frac{2 \mathrm{p}_{2}}{\mathrm{D}_{\mathrm{e}_{2}}} ; \tag{17}
\end{equation*}
$$

- $p_{2}$ is the helical parameter;
$-a$ is the sum of the size of inner diameter of the rotor to be generated and outer diameter of the generating disk cutter.

The condition for determining the feature of the elementary helical surface is:

$$
\left(\overrightarrow{\mathrm{N}}_{\Sigma}, \overrightarrow{\mathrm{A}}, \overrightarrow{\mathrm{r}}_{2}\right)=0,
$$

where $r_{2}$ is the vector from the current point (elementary helical surface) compared to $O_{2 S}$;

$$
\begin{align*}
& \overrightarrow{\mathrm{r}}_{2}=\overrightarrow{\mathrm{r}}-\mathrm{ai} \overrightarrow{\mathrm{i}} ; \\
& \overrightarrow{\mathrm{r}}_{2}=\left[\mathrm{X}_{2 \mathrm{i}} \cos \theta_{2}-\mathrm{Y}_{2 \mathrm{i}} \sin \theta_{2}\right] \overrightarrow{\mathrm{i}}-\mathrm{a} \cdot \overrightarrow{\mathrm{i}}+  \tag{19}\\
& +\left[\mathrm{X}_{2 \mathrm{i}} \sin \theta_{2}+\mathrm{Y}_{2 \mathrm{i}} \cos \theta_{2}\right] \overrightarrow{\mathrm{j}}-\mathrm{p}_{2} \cdot \theta_{2} \cdot \overrightarrow{\mathrm{k}} .
\end{align*}
$$

The meshing condition (18) becomes:


$$
\varepsilon=\left(1 \times 10^{-3}\right) .
$$

The points that satisfy the basic meshing condition (20) and belonging to the helical surface represent the characteristic curve - the curve of contact between the helical surface and the primary peripheral surface of the disk cutter.

Be

$$
\mathrm{X}_{2}^{\mathrm{C}}=\left\{\begin{array}{lll}
\mathrm{X}_{2 \mathrm{i}}^{\mathrm{C}} & \mathrm{Y}_{2 \mathrm{i}}^{\mathrm{C}} & \mathrm{Z}_{2 \mathrm{i}}^{\mathrm{C}} \tag{21}
\end{array}\right\}^{\mathrm{T}}, \mathrm{i}=1 \ldots \mathrm{~m}
$$

the matrix of points on the characteristic curve.
The transformation of coordinates:

$$
\begin{align*}
& \left\{\begin{array}{l}
\mathrm{X}_{2 \mathrm{~S}}=\mathrm{X}_{2 \mathrm{i}}^{\mathrm{C}}-\mathrm{a} ; \\
\mathrm{Y}_{2 \mathrm{~S}}=\mathrm{Y}_{2 \mathrm{i}}^{\mathrm{C}} \cos \alpha-\mathrm{Z}_{2 \mathrm{i}}^{\mathrm{C}} \sin \alpha ; \\
\mathrm{Z}_{2 \mathrm{~S}}=\mathrm{Y}_{2 \mathrm{i}}^{\mathrm{C}} \sin \alpha+\mathrm{Z}_{2 \mathrm{i}}^{\mathrm{C}} \cos \alpha,
\end{array}\right.  \tag{22}\\
& \mathrm{i}=1 \ldots \mathrm{~m} .
\end{align*}
$$

move the coordinates of characteristic curve in the reference system belonging to the disk cutter, $X_{2 S} Y_{2 S}$ $Z_{2 S}$.

The axial section of the disk cutter is obtained from (22), in the form:

$$
\begin{align*}
& \left\{\begin{array}{l}
\mathrm{H}=\mathrm{Z}_{2 S} \\
\mathrm{R}=\sqrt{\mathrm{X}_{2 S}^{2}+\mathrm{Y}_{2 S}^{2}}
\end{array}\right.  \tag{23}\\
& \mathrm{i}=1 \ldots \mathrm{~m} .
\end{align*}
$$

## - First application (screw compressor, ratio 4/6)

Table 2. The constructive date of the reference rack, (see Figure 2)

| $\mathrm{R}_{0}[\mathrm{~mm}]$ | $\mathrm{r}_{0}[\mathrm{~mm}]$ | $\mathrm{u}_{\max }[\mathrm{mm}]$ | $\psi_{\max }\left[{ }^{0}\right]$ | $\mathrm{v}_{\max }\left[{ }^{0}\right]$ | $\mathrm{v}_{1 \max }\left[{ }^{0}\right]$ | $\mathrm{u}_{1 \max }[\mathrm{~mm}]$ | $\mathrm{L}_{\mathrm{p}}[\mathrm{mm}]$ | $\mathrm{c}_{0}[\mathrm{~mm}]$ | $\mathrm{Rr}_{2}[\mathrm{~mm}]$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 22.000 | 1.100 | 10.300 | 63.400 | 63.400 | 58.285 | 6.451 | 50.265 | 4.000 | 48.000 |

Table 3. The axial profile of disk cutter coordinates of female rotor

| Crt. <br> no. | $\mathrm{R}[\mathrm{mm}]$ | $\mathrm{H}[\mathrm{mm}]$ | Crt. <br> no. | $\mathrm{R}[\mathrm{mm}]$ | $\mathrm{H}[\mathrm{mm}]$ | Crt. <br> no. | $\mathrm{R}[\mathrm{mm}]$ | H <br> $[\mathrm{mm}]$ | Crt. <br> no. | $\mathrm{R}[\mathrm{mm}]$ | H <br> $[\mathrm{mm}]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 47.786 | -12.790 | 11 | 52.575 | -10.917 | 21 | 57.217 | 9.849 | 31 | 52.136 | 11.664 |
| 2 | 48.087 | -12.370 | 12 | 53.092 | -10.763 | 22 | 56.705 | 10.022 | 32 | 51.631 | 11.856 |
| 3 | 48.462 | -12.227 | 13 | 53.610 | -10.612 | 23 | 56.195 | 10.196 | 33 | 51.128 | 12.050 |
| 4 | 48.974 | -12.055 | 14 | 54.129 | -10.463 | 24 | 55.685 | 10.373 | 34 | 50.625 | 12.247 |
| 5 | 49.486 | -11.886 | 15 | 54.648 | -10.316 | 25 | 55.176 | 10.551 | 35 | 50.123 | 12.445 |
| 6 | 49.999 | -11.719 | 16 | 55.168 | -10.172 | 26 | 54.667 | 10.732 | 36 | 49.623 | 12.645 |
| 7 | 50.513 | -11.554 | 17 | 55.688 | -10.030 | 27 | 54.160 | 10.914 | 37 | 49.123 | 12.848 |
| 8 | 51.028 | -11.392 | 18 | 56.210 | -9.890 | 28 | 53.652 | 11.099 | 38 | 48.625 | 13.054 |
| 9 | 51.543 | -11.231 | 19 | 56.731 | -9.751 | 29 | 53.146 | 11.285 | 39 | 48.136 | 13.281 |
| 10 | 52.059 | -11.073 | 20 | 57.253 | -9.612 | 30 | 52.640 | 11.473 | 40 | 47.813 | 13.684 |



Fig. 4. Female rotor - the tooth profile of disk cutter
In the Table 3 are described the axial section coordinates of disk cutter for the female rotor.

The flank of female rotor helicoidal surface is a helicoidal cylindrical surface, constant step, left helix, helicoidal parameter $\mathrm{p}_{2}$ and $\mathrm{a}=\mathrm{R}_{\mathrm{s}}+\mathrm{R}_{2 \text { int }}$.

Table 4. The geometrical constructive elements of the female rotor

| $\mathrm{Rr}_{2}[\mathrm{~mm}]$ | 48.000 |
| :--- | :--- |
| $\operatorname{Rint}_{2}[\mathrm{~mm}]$ | 26.034 |
| $\mathrm{a}[\mathrm{mm}]$ | 95.032 |
| $\mathrm{p}_{2}[\mathrm{~mm}]$ | 28.649 |
| $\mathrm{R}_{\mathrm{S}}[\mathrm{mm}]$ | 68.998 |
| $\left.\beta{ }^{\circ}{ }^{\circ}\right]$ | 59.181 |

Helical parameters are calculated with equation:

$$
\begin{equation*}
\mathrm{p}_{2}=\left(\frac{360^{\circ}}{300^{\circ} \cdot \mathrm{i}} \cdot \mathrm{D}_{1}\right) \cdot \frac{1}{2 \cdot \pi} \tag{24}
\end{equation*}
$$

with $\mathrm{i}=4 / 6$ or $3 / 5$.

Fig. 5. The geometrical constructive elements of female rotor


## Second application (screw compressor, ratio 3/5)

Table 5. The constructive data of the reference rack (see Figure 2)

| $\mathrm{R}_{0}[\mathrm{~mm}]$ | $\mathrm{r}_{0}[\mathrm{~mm}]$ | $\mathrm{u}_{\max }[\mathrm{mm}]$ | $\psi_{\max }\left[^{0}\right]$ | $\mathrm{v}_{\max }\left[{ }^{0}\right]$ | $\mathrm{v}_{1 \max }\left[{ }^{0}\right]$ | $\mathrm{u}_{1 \max }[\mathrm{~mm}]$ | $\mathrm{L}_{\mathrm{p}}[\mathrm{mm}]$ | $\mathrm{c}_{0}[\mathrm{~mm}]$ | $\mathrm{Rr}_{2}[\mathrm{~mm}]$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 22.000 | 2.000 | 7.045 | 70.300 | 70.300 | 35.054 | 7.774 | 62.832 | 4.000 | 50.000 |

Table 6. The axial profile of disk cutter coordinates of female rotor

| Crt. <br> no. | R <br> $[\mathrm{mm}]$ | H <br> $[\mathrm{mm}]$ | Crt. <br> no. | R <br> $[\mathrm{mm}]$ | H <br> $[\mathrm{mm}]$ | Crt. <br> no. | $\mathrm{R}[\mathrm{mm}]$ | H <br> $[\mathrm{mm}]$ | Crt. <br> no. | R <br> $[\mathrm{mm}]$ | H <br> $[\mathrm{mm}]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 45.609 | -9.426 | 11 | 60.330 | -6.429 | 21 | 65.681 | 4.944 | 31 | 50.284 | 11.476 |
| 2 | 45.941 | -9.027 | 12 | 60.847 | -6.263 | 22 | 65.265 | 5.292 | 32 | 49.810 | 11.740 |
| 3 | 46.450 | -8.844 | 13 | 61.360 | -6.088 | 23 | 64.831 | 5.617 | 33 | 49.336 | 12.005 |
| 4 | 46.983 | -8.743 | 14 | 61.869 | -5.899 | 24 | 64.381 | 5.920 | 34 | 48.863 | 12.271 |
| 5 | 47.517 | -8.647 | 15 | 62.373 | -5.699 | 25 | 63.917 | 6.201 | 35 | 48.391 | 12.537 |
| 6 | 48.051 | -8.554 | 16 | 62.872 | -5.485 | 26 | 63.444 | 6.466 | 36 | 47.919 | 12.805 |
| 7 | 48.586 | -8.465 | 17 | 63.364 | -5.257 | 27 | 62.960 | 6.712 | 37 | 47.445 | 13.073 |
| 8 | 49.122 | -8.379 | 18 | 63.849 | -5.013 | 28 | 62.469 | 6.941 | 38 | 46.977 | 13.342 |
| 9 | 49.658 | -8.295 | 19 | 64.325 | -4.753 | 29 | 61.970 | 7.155 | 39 | 46.506 | 13.612 |
| 10 | 50.195 | -8.215 | 20 | 64.790 | -4.475 | 30 | 61.466 | 7.356 | 40 | 46.036 | 13.883 |



Fig. 6. The solid of disk cutter for female rotor


Fig. 7. Female rotor - the tooth profile of disk cutter

In Table 6 are described the axial section coordinates of disk cutter for the female rotor.

The flank of female rotor helicoidal surface, is a helicoidal cylindrical surface, constant step, left helix, helicoidal parameter $\mathrm{p}_{2}$ and $\mathrm{a}=\mathrm{R}_{\mathrm{s}}+\mathrm{R}_{2 \text { int }}$.

Table 7. The geometrical constructive elements of female rotor

| $\mathrm{Rr}_{2}[\mathrm{~mm}]$ | 50.000 |
| :--- | :--- |
| $\operatorname{Rint}_{2}[\mathrm{~mm}]$ | 27.442 |
| $\mathrm{a}[\mathrm{mm}]$ | 95.436 |
| $\mathrm{p}_{2}[\mathrm{~mm}]$ | 33.742 |
| $\mathrm{R}_{\mathrm{S}}[\mathrm{mm}]$ | 67.994 |
| $\beta\left[^{\circ}\right]$ | 67.978 |



Fig. 8. The geometrical constructive elements of


Fig. 9. The solid of disk cutter for female rotor

## 6. Conclusions

It was considered a constructive form of a helical screw compressor female rotor.

Ratios studied were $4 / 6$ and $3 / 5$.
To determine profiles generating disk cutter the method of tangents was applied.

Solid models and the disk cutter were presented.

## Acknowledgement

The authors gratefully acknowledge the financial support of the Romanian Ministry of Education, Research and Innovation through grant PN_II_ID_791/2008.

## REFERENCES

[1]. Litvin, F. L., 1989, "Theory of Gearing", NASA RP1212 (AVSCOM 88-C-035), Washington, D.C.
[2] Oancea, N., Surface generation through winding, Volume I, Fundamental Theorems, 2004, "Dunărea de Jos"University publishing house, ISBN 973-627-106-4; ISBN 973-627-107-2.
[3] Oancea, N., Surface generation through winding, Volume II, Complementary Theorems, 2004, "Dunărea de

Jos"University publishing house, ISBN 973-627-106-4, ISBN 973-627-170-6.
[4] Teodor, V. "Contribution to the elaboration of a method for profiling tools-tools which generate by enwrapping", Lambert Academic Publishing, ISBN 978-3-9433-8261-8.
[5] Zhou Z., 1992, "Computer Aided Design of a Twin Rotor Screw Refrigerant Compressor" Proceedings of the 1992 International Compressor Engineering Conference at Purdue, West Lafayette, pp. 457-465.
[6] Litvin, F. L., and Feng, Pin-Hao, 1997, "Computerized Design, Generation, and Simulation of Meshing of Rotors of Screw Compressor".
[7] Stosic N, Smith I. K, and Kovacevic A, 2002: Optimization of Screw Compressor Design, XVI International Compressor Engineering Conference at Purdue, July 2002.
[8] Stosic, N., Mujic, E., Smith, I.K., Kovacevic, A., "Profiling of Screw Compressor Rtotors by Use Direct Digital Simulation". International Compressor Engineering Conference at Purdue, July 2008.
[9] Tseng Ching-Huan, "Synthesis and Optimization for Rotor Profiles in Twin RotorScrew Compressors", Journal of Mechanical Design december 2000, Vol. 122 O 545.
[10] Stosic, N., Smith, I., Kovacevic, A., "Screw Compressors - Mathematical Modelling and Performance Calculation". Springer, feb. 2005.
[11] Baicu, I., Oancea, N., "Profilarea sculelor prin modelare solida" Editura TEHNICA-INFO,Chişinău, 2002, ISBN 9975-63-172-X.

# Metodă pentru profilarea sculei disc destinate prelucrării rotorului condus din componența compresorului elicoidal 

## -Rezumat-

Rotoarele compresoarelor elicoidale sunt mărginite de suprafețe cilindrice elicoidale de pas constant. Generarea acestor tipuri de suprafețe este posibil a fi realizată utilizând freze disc a căror suprafețe periferice sunt suprafețe de revoluție.

În prezenta lucrare este propusă o metodă şi un algoritm pentru profilarea suprafețelor periferice primare ale frezelor disc, reciproc înfăşurătoare cu suprafețele elicoidale ale rotoarelor compresorului elicoidal.

Algoritmul propune substituirea ecuațiilor analitice ale profilului compus al secțiunii transversale a rotorului cu polinoame Bezier de grad inferior.

