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ABSTRACT 

Multipoint forming of thin sheets plates is based on the discrete die-punch 

reconfigurable tooling concept. The paper is concerned with the application of the 

neural network method in studying the springback phenomenon in multipoint 

forming. The method of neural network is first presented. An algorithm based on 

FEM and neural network modeling is then presented. Using the FEM simulation, the 

springback values for a simply curved geometry are obtained. On this basis, a 

neural network is trained, using as input parameters the rubber thickness, the 

rubber elastic modulus and the pins stroke and as output the springback in width 

and height defined. The conclusions obtained from the neural network modeling 

certify the validity of the developed method. 
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1. Introduction 
 
The reconfigurable multipoint forming (RMPF) is a 
relatively new sheet metal manufacturing method 
used in small batch production. The technology is 
known also as MPF - Multipoint Forming [6, 7, 9, 10, 
15] or DDF - Digitized Die Forming [1-3].  

 In this manufacturing method, a pins matrix 
approximates the continuously active surfaces of the 
conventional die (Figure 1). In the pins matrix each 
pin is vertically aligned according to the part 
geometry.  

 
Fig. 1. Multipoint forming die subassembly 

Different methods have been proposed for the 
multipoint forming process study. One of them refers 
to neural networks. 
 Neural networks technique as a field of artificial 
intelligence is an effective method to solve complex 
technical problems, proved to be applicable in many 
areas including that of plastic deformation. 
 Artificial neural networks (ANN) have the 
advantage that they can deduce general principles of a 
functional model of a given set of data, extracted from 
training data. They may also respond to insufficient 
entries, unlike other supervision computer techniques. 
Neural networks ability to obtain experimental data 
relation is a major advantage in their use. In addition, 
by comparing the input and output of the network 
there can be observed trends and provided 
explanations for the behavior obtained.  
 ANN is an information processing system and 
has some characteristics similar to the biological 
neural networks. A neural network is characterized 
by: 
 a) network architecture (model connections 
between neurons / nodes); 
 b) the method of determining the connection 
weights (the training algorithm); 
 c) activation function. 
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 Depending on the topology, neural networks can 
be classified into two categories, with back 
propagation (recurring or "feedback") and spread 
before ("feedforward") information. In networks with 
propagation type "feedforward" a neuron output is 
sent to other neurons without receiving any input 
information from neurons from upper layers. 
 Most RNA use a multilayer architecture with 
back propagation of error. So the knowledge gained 
from training experiences are applied to upper layers, 
allowing the network to take further decisions, to 
make new classifications and predictions. The first 
layer and last one have inputs and output nodes 
corresponding to input variables and target variables 
respectively. Neurons in the hidden layers are 
providing interconnections between input and output 
neurons. There is no particular rule, but in general, the 
number of the hidden layer nodes is assumed to be a 
number around: 
 
N = 2 n  + 1       (1) 
 
where N is the number of the hidden layer nodes 
while n is the number of input parameters. 
 A hidden layer of neurons uses the weighted 
sum of the previous layer and a nonlinear function 
that allows RNA to solve complex problems quickly 
and easily. RNAs aim to achieve optimal weights, to 
get the best value for the output layer nodes. Below 
(Figure 2) is shown schematically a neural network 
with three layers. 
 

 
 

Fig. 2. Neuronal network with 3 layers 

 
 RNA is essentially based on two basic concepts: 
 a) operation to the level of independent 
processing units; 
 b) the existence of a learning law. 
 Algorithms based on neural networks are 
parallel algorithms and calculation is also parallel. 
 Techniques based on neural network techniques 
can be classified into supervised and unsupervised. 
 In the first category of methods, training is 
called supervised because are known both the input 
and output system parameters. The system is modeled 
using a neural network and the weights between 
layers are initialized with random values. By 
comparison between the known input parameters and 

the output parameters obtained from the application of 
network input data set, an error signal is obtained, by 
means of which are determined and adjusted the 
weights of the network layers to minimize a 
performance criterion. 
 Unsupervised learning methods do not use 
known output quantities in the neural network training 
stage, using the input quantities only to adjust the 
weights. In this way, the output classes can be 
constructed corresponding to certain entries in the 
data set, or outputs such as "winner takes all", where 
the output neuron with the highest activity is declared 
the winner and is activated, the other output neurons 
of the layer being not activated. This process is called 
self-organization and can be successfully applied in 
pattern recognition problems. 
 A back propagation neural network was trained 
on the basis of these simulation studies. Networks 
prediction was compared with the simulation results. 
 
2. Algorithm for studying the deformation 

process in multipoint forming 
 
 
 Due to the large number of parameters that 
influence the process of multipoint forming, the 
performance optimization of the deformation 
conditions requires a large number of experiments 
carried out under specific conditions. 
 The analysis showed that the studied process is 
described by a large number of parameters, which 
have a nonlinear variation and are interdependent on 
each other. 
 In these circumstances it is difficult to achieve a 
mathematical model describing the process faithfully 
studied. 
 Therefore, to convert data obtained by 
simulating with FEM the multipoint forming process 
with interpolator, in manufacturing and design 
knowledge, an algorithm was developed for 
predicting the deformation behavior material in the 
process. The algorithm is shown in Figure 3.  
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Fig. 3. Neuronal network algorithm based on FEM 
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3. FEM model and process simulation 
  

 The FEM model is presented in Figure. 4.  
 
  

 
 
 

Fig. 4. Reconfigurable multipoint forming tooling 

FEM model 
 

The tooling was modeled as rigid surfaces 
using the simulation program DYNAFORM-PC. No 
blankholder was used. In the model between the 
active elements and the blank were included two 
interpolators (upper and down rubber). No 
blankholder was used so the ends of the rubbers are 
free to expand. 

The upper die and lower one consist of 100 
pins for each, disposed face to face, both on x-
direction and y-direction.  

The part geometry is a simply curved part with 
an interior radius of 95 mm, a width of 120 mm 
(maximum depth is 21.345 mm) and a length of 130 
mm. The blank was a rectangular plate with the 
dimensions of 120x130 mm.  

The punch speed was 100 mm/second. A 
Coulomb friction law was used with a friction 
coefficient of 0,125. 

For simulation were used 4-node Belytschko-
Tsay shell elements, which provide five integration 
points through the thickness of the sheet metal.  

The material used in experiments was mild 
steel, with a thickness of 1 mm. The yielding of the 
material was modeled using a power law, as: 
  

nK εσ =     (2) 
 

According to the material characteristics, for 
simulation the n-value = 0,22 and K = 648 MPa. The 
R-values were set to: R00 – 1,87; R45 – 1,27; R90 – 
2,17. 

For rubber interpolator was chosen a material 
type Elvax 460. The properties of the material were: 
density, ρ – 0.946 g/cm3; hardness Shore ASTM 
D2240 scale B – 40 and scale A – 80; tensile strength, 
Rm – 18 MPa; elongation – 750%; stiffness, k – 43 
MPa; Poisson ratio, ν – 0.499. Solid elements were 
used for the discretization of the rubber interpolator. 

The interpolator was modelled as an elastic material, 
*MAT_ELASTIC (LS-DYNA Type 1). The rubber 
flexural moduli varied between 14 and 44 MPa. The 
thicknesses of the rubbers varied between 2 and 10 
mm. The simulations were done also with different 
punch strokes (Table 1). 
 

Table 1. FEM simulation parameters 
 

Nr. 
crt. 

Rubber  
thickness,  

[mm] 

Pins  
strokes,  
[mm] 

Rubber 
elastic 

modulus,  
[MPa] 

1. 2 17 14 
2. 3 18 24 
3. 4 19 34 
4. 5 20 44 
5. 6 21  
6. 7 22  
7. 8 29  
8. 9 30  
9. 10   

 
 The geometry of part is affected by the rubber 
presence in terms of profile radius and depth. 
    

B

R

H

 
 

Fig. 5. Parameters for springback definition 
 

 The blank deformation was evaluated in terms 
of springback. The springback could be defined 
function of the three parameters presented in Figure 5. 
 The springback was calculated using the 
relation: 

i

fi

V

VV
S

−
=∆       (3) 

where: ∆S is the value of the springback, S is one of 
the three parametrs; Vi – initial value of one of the 
three parametrs; Vf – final value of one of the three 
parameters. 

In Table 2, there are presented only some of the 
values of rubber thickness (for thickness from 2 to 7 
mm). Also, the values of springback on the width and 
height direction are considered. (Table 2). 
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Tabel 2. Springback values using FEM simulation and Neural Networks modelling 
FEM simulation NNTmodeling Error [%] Crt. 

no. 

Rubber 
thickness 

[mm] 

Pins 
strokes 
[mm] 

Rubber 
elastic modulus 

[MPa] ∆B ∆H ∆B ∆H ∆B ∆H 

1. 2 21 14,00 0,034 -0,326 0.034 -0.301 -1.0 7.8 
2. 2 21 24,00 0,032 -0,258 0.033 -0.267 -3.9 -3.5 
3. 2 21 34,00 0,031 -0,246 0.031 -0.233 0.2 5.4 
4. 2 21 44,00 0,029 -0,225 0.030 -0.221 -1.9 2.0 
5. 2 23 14,00 0,030 -0,234 0.030 -0.229 -0.9 2.2 
6. 2 23 24,00 0,026 -0,192 0.026 -0.188 -3.3 2.0 
7. 2 23 34,00 0,021 -0,146 0.021 -0.130 -2.9 11.2 
8. 2 23 44,00 0,016 -0,109 0.017 -0.086 -8.1 21.1 
9. 2 25 14,00 0,030 -0,234 0.030 -0.225 -2.3 4.0 

10. 2 25 24,00 0,026 -0,192 0.025 -0.177 1.1 7.9 
11. 2 25 34,00 0,021 -0,146 0.021 -0.134 -2.4 8.3 
12. 2 25 44,00 0,016 -0,109 0.017 -0.086 -6.2 20.5 
13. 3 22 14,00 0,032 -0,260 0.031 -0.247 2.9 4.7 
14. 3 22 24,00 0,029 -0,223 0.029 -0.219 0.5 1.9 
15. 3 22 34,00 0,026 -0,187 0.026 -0.185 -0.7 0.8 
16. 3 22 44,00 0,023 -0,155 0.022 -0.143 2.4 7.6 
17. 3 23 14,00 0,026 -0,196 0.026 -0.193 0.2 1.3 
18. 3 23 24,00 0,020 -0,141 0.020 -0.131 0.8 6.7 
19. 3 23 34,00 0,013 -0,076 0.014 -0.061 -3.8 19.7 
20. 3 23 44,00 0,010 -0,044 0.011 -0.027 -11.9 38.6 
21. 4 23 14,00 0,030 -0,233 0.031 -0.225 -1.9 3.5 
22. 4 23 24,00 0,024 -0,166 0.026 -0.170 -7.0 -2.6 
23. 4 23 34,00 0,017 -0,101 0.018 -0.089 -3.5 11.7 
24. 4 23 44,00 0,012 -0,054 0.012 -0.038 -5.1 28.8 
25. 5 21 14,00 0,020 -0,115 0.019 -0.123 3.6 -7.0 
26. 5 21 24,00 0,010 -0,039 0.012 -0.044 -14.6 -13.1 
27. 5 21 34,00 0,010 -0,018 0.010 -0.020 3.5 -11.5 
28. 5 21 44,00 0,014 -0,014 0.010 -0.016 31.1 -12.1 
29. 5 22 14,00 0,036 -0,294 0.037 -0.295 -2.3 -0.2 
30. 5 22 24,00 0,034 -0,271 0.035 -0.270 -3.0 0.3 
31. 5 22 34,00 0,032 -0,247 0.033 -0.243 -2.6 1.8 
32. 5 22 44,00 0,030 -0,223 0.031 -0.218 -2.0 2.2 
33. 5 23 14,00 0,033 -0,256 0.033 -0.254 -2.0 0.8 
34. 5 23 24,00 0,028 -0,195 0.029 -0.197 -3.7 -1.1 
35. 5 23 34,00 0,022 -0,132 0.023 -0.129 -4.6 2.4 
36. 5 23 44,00 0,015 -0,073 0.018 -0.079 -15.7 -7.9 
37. 6 21 14,00 0,038 -0,322 0.038 -0.315 -0.8 2.2 
38. 6 21 24,00 0,036 -0,304 0.037 -0.293 -0.9 3.7 
39. 6 21 34,00 0,035 -0,287 0.035 -0.276 -0.3 3.9 
40. 6 21 44,00 0,034 -0,268 0.035 -0.266 -1.8 0.6 
41. 6 23 14,00 0,034 -0,274 0.035 -0.269 -0.7 2.0 
42. 6 23 24,00 0,030 -0,220 0.030 -0.210 0.6 4.4 
43. 6 23 34,00 0,026 -0,177 0.025 -0.154 2.4 13.3 
44. 6 23 44,00 0,019 -0,105 0.020 -0.105 -3.9 0.3 
45. 7 20 14,00 0,036 -0,293 0.037 -0.300 -2.0 -2.2 
46. 7 20 24,00 0,036 -0,289 0.036 -0.284 -0.8 1.9 
47. 7 20 34,00 0,034 -0,274 0.035 -0.273 -2.2 0.2 
48. 7 20 44,00 0,034 -0,266 0.035 -0.267 -2.5 -0.5 
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4. Application of neural network 
 
 The results of 96 case studies were used for 
training a back propagation neural network, with 3 
inputs and 2 outputs. The input and output data 
required for training the neural network is given in 
Table 2.  
The input parameters were the rubber thickness, the 
rubber elastic modulus and the pins stroke. The output 
parameter was the springback.  
The bias factors were 0.385. The neural network was 
trained for average error tolerance of 0.0004. It 
converged in 200000 cycles. 
Figure 5 presents the neural network designed: 

 
Fig. 5. Neural network used in training data 

 
5. Results and discussions 

 
 The trained neural network has been used for 
predicting the responses of input data.  

The learning rate was 0.6 and the momentum 
was 0.8. 

The importances of the input columns were: 
pins stroke 212.6892; 
rubber thickness 163.3509; 
rubber elastic modulus 16.4012. 

  
 

6. Conclusions 
 
This paper presents the application of neural network 
to study the springback in multipoint forming. First, 
the process is modelled using the finite element 
method. The numerical experiments give a data set of 
springback values. Then using neural network 
modelling, the data set is trained. The average error is 
0.66 per cent for B and 1.95 per cent for H. It can be 
observed from the tables that most of the time, neural 
network predictions are very close to the simulation 
results. These errors can be further reduced by 
reducing the tolerance limit and increasing the 
training patterns. Maximum error is in the prediction 
of ∆H, whereas minimum error is in the ∆H 
prediction too.  
 This method will help in the quick 
determination of the behavior of sheets in the 
multipoint forming. The optimum parameters 
obtained by neural network, will be further checked 
using the finite element analysis. 
 This will reduce the simulation time and also the 
costs with the FEM simulations, and will help in the 
designing of a well-balanced multipoint forming 
process. 
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Aplicarea reŃelelor neuronale în procesul de formare multipunct 

 

—Rezumat— 

 
Formarea multipunct a tablelor subŃiri se bazează pe conceptul de matriŃă 

reconfigurabilă multipunct. Această lucrare prezintă aplicarea metodei reŃelelor 
neuronale în studiul fenomenului de revenire elastică în cazul formării multipunct. 

În prima parte a lucrării se prezintă metoda reŃelelor neuronale. De asemenea 
este prezentat un algoritm de modelare bazat pe FEM şi pe reŃele neuronale. 
Utilizând simularea FEM, sunt obŃinute valorile revenirii elastice pentru o geometrie 
a piesei cu simplă curbură. Pe baza valorilor obŃinute a fost antrenată o reŃea 
neuronală, utilizând ca parametri de intrare grosimea interpolatorului de cauciuc, 
modulul de elasticitate al cauciucului şi cursa pinilor. Ca date de ieşire au fost 
considerate revenirea elastică în lăŃime şi înălŃime. Concluziile obŃinute pe baza 
interogării reŃelei neuronale certifică validitatea metodei prezentate. 

 
 


