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ABSTRACT 
The increasing demands for precision and efficiency of machining ask for 

development of new control strategies of a machining system based on the 
identification of its static and dynamic characteristics under operational conditions. 
This paper presents a procedure for formulating an analytic model of the dynamics 
of the machining system based on the identification of the system’s parameters 
during its normal operation. This provides realistic prerequisites for in-process 
machining system testing. The models based on on-line identification may be used to 
control dynamic stability in machining and further for implementing a pro-active 
machining system optimization by correlating model parameters to for instance 
surface roughness features. This qualitative identification procedure and model 
parameters are used to formulate a decision rule for ascribing to a given machining 
process one of possible type of classes. The decision rule is formulated in terms of 
certain statistical characteristics in such a way to minimize the classification errors. 
 
KEYWORDS: machining, stability, ARMA, modelling, classification 
 
 

 
1. INTRODUCTION 

 
1.1. Problem definition 

 
The primary task of process control in a 

manufacturing environment is to improve the flow of 
materials and the quality of parts. One of the limiting 
factors for achieving high accuracy and/or high 
material removing rates is posed by the dynamic 
effects brought about by the interaction between 
structural and process parameters during any 
machining operations. The problem of machine tool 
vibration has been thoroughly studied and is well 
documented in literature [9, 11]. The issue is 
periodically revived by the steady introduction of new 
structural materials as well as the attempt to achieve a 
higher efficiency of manufacturing processes in a 
dynamic and harsh manufacturing environment. 
Model-based identification for stability analysis and 
chatter control is treated in [2, 4, 7]. 

In milling, the time-varying and discontinuous 
nature of the machining system represents a challenge 
from the point of view of parameter selection, control 
and optimization. Many of the methods used to 
analyze, control and optimize machining systems are 
based on off-line procedures or test environments that 
do not exactly replicate the actual machining 

operation [13]. The fundamental problem in the 
stability of a machining system is the discrimination 
between forced vibrations and self-excited vibration, 
which is treated in this paper in view of the following 
considerations: 

1. Formulation of a qualitative/semi-
qualitative mathematical model of the 
machining system for subsequent 
quantitative analysis. 

2. Evaluation of the system’s stability 
boundary. 

3. Implementation of a suitable design for 
real time monitoring and control. 

The term ‘qualitative’ implies that the model is 
based on the statistical analysis of the measured 
system’s response. Although the model-based 
identification approach presented in this paper leads 
to the estimation of key dynamic parameters, these 
parameters are nevertheless meaningful only within 
certain confidence intervals. The primary contribution 
of this paper lies within the formulation and 
implementation of parametric stochastic models for 
the study of the dynamic interaction between the 
machine tool structure and the chip formation in 
milling of hard materials. A criterion for the 
computation of the dissimilarity between various 
inferred models is formulated based on characteristic 
frequencies and the overall damping ratios (join 
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system, elastic structure-cutting process). Recursive 
model identification represents an advanced approach 
for real time monitoring, control and optimization of 
machining systems. The parametric stochastic models 
are discussed in section 2. Experimental procedure 
and results are presented in section 3. Discussions and 
conclusions are outlined in section 4 and 5, 
respectively. 
 

2. CONCEPT OF MODEL-BASED 
     IDENTIFICATION 
 

The term identification refers to the formulation 
of a mathematical model of a dynamic system based 
upon signal measurements [6] and belongs to a class 
of inverse dynamic problems [10] encountered in 
various fields of natural science and technology. The 
key concept of the identification procedure in this 
paper is to find a feature of the measured random 
response that can be used to discriminate between 
machining systems of various types. This is a second 
order qualitative identification since no provision for 
quantitative estimation is done on the measured signal 
(as opposed to non-parametric identification 
methods). 

First the model’s parameters are estimated. The 
frequency and overall damping ratio (join system, 
elastic structure-cutting process) are then statistically 
computed from the model parameters and used as 
discrimination features [3]. The desired mathematical 
model of the machining system is based on the data 
obtained during normal operational conditions. In this 
way we take a step beyond the classical method of 
analyzing the dynamics of a machining system, which 
separately identifies the structural and process 
parameters. This type of identification and parametric 
modelling relies strongly on statistical methods 
because of the random nature of the cutting process. 
The novelty of this concept is represented by the 
extension of the model-based identification from off-
line to recursive (sequential) parameter identification. 
 

2.1. Parametric ARMA models 
 
Parametric models used here are based on 

stochastic processes and a special class within this 
family is defined by autoregressive moving average or 
ARMA models [5, 8]. ARMA models offer an 
acceptable trade-off between flexibility and 
parsimony with respect to the number of model 
parameters. The model for an ARMA process can be 
expressed as 

 
)()()( zUzHzY =  (1) 

 
where Y(z), U(z) and H(z) are the z-transforms of the 
output sequence, input sequence and the system 
impulse response (transfer function), respectively, and 
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The input excitation in an ARMA process is not 

observable but can be assumed to be random and 
broadband compared with the measured output 
sequence. This is a true assumption for the machining 
system where machine tools are usually rather low 
damped structures interacting with the chip formation 
process. Dynamic variations resulting from the 
interaction between the dynamics of mechanical 
structures and the chip flow formation process may be 
considered to be broadband frequency excitation. 
Furthermore, in milling, the intermittent engagement 
of multi tooth cutters excites the structure with forces 
similar to impulses. 
 

2.2. Physical parameter identification 
 
For a second order under damped system with 

impulse response function given by 
 

( ) sin( )th z Ae tξ ω φ−= +  (3) 
 
the ci and ai parameters of an ARMA model in 
equation (2) can be related to physical parameters, A 
(amplitude), ξ (damping) and ω (angular frequency) 
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where Δt is the sampling interval. 

Estimation of the Power Spectral Density (PSD) 
of sampled data containing stochastic components is 
traditionally performed by the help of Fast Fourier 
Transform (FFT). There are however, a number of 
problems related to spectral analysis based on non-
parametrical methods such as Fourier approach. The 
major limitation of FFT spectral analysis is the lack of 
ability to discriminate the spectral components of two 
signals. This becomes a major problem when 
attempting to analyze short time series because the 
frequency resolution is the inverse of the number of 
available samples. The classical PSD based on 
Discrete Fourier Transform (DFT) is given by 
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where N is the number of samples. The power 
spectrum for an process described by equation (5) is 
obtained by evaluating the impulse response function 
around the unit circle in z-transform plane,  
z-1 = exp(-j2πfDt). 
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Using only AR parameters, the PSD function is 
determined as follows 
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The PSD can therefore be determined solely 

from the knowledge of the coefficients a1, a2, …, ap, 
and the variance, σ2. 

In the model-based identification procedure, the 
estimation of physical parameters, operational 
frequencies ωop and operational damping ratios ξop can 
be used for the control of dynamic stability. By 
operational dynamic parameters we denote the 
combination of the structural vibration modes and 
process vibration modes resulting during machining 
system operation. It is important to stress that in the 
context of stochastic modelling, the estimated 
physical parameters are meaningful only from a 
statistical point of view, i.e. they are properly 
significant within a certain confidence interval. The 
mapping process from ARMA parameter domain to 
the ωop − ξοp domain gives the advantage of robust 
chatter identification criteria. Theoretically, dynamic 
stability can be defined in terms of positive damping. 
A system is dynamically stable if the damping is 
positive and unstable when damping becomes 
negative. In machining, as we are interested in 
avoiding instabilities like chatter, when damping start 
to decrease towards zero it is a proof that the system 
approaches the stability threshold. Therefore, 
monitoring damping in an on-line identification 
scheme can give good indication about the dynamical 
state of the system. 

The motion of an n degree-of-freedom system 
excited by a random excitation f(t) can be represented 
by a system of second-order differential equations 

 
)()()()( tftKytyCtyM =++ &&&  (7) 

 
[y1(t), y2(t), …, yj(t), …, yn(t)] is the vector of n 
displacements of the system, yj(t) is the displacement 
of the mass j. The problem is to calculate the n 
operational frequencies, (ωop)j and the n operational 
damping ratios, (ξop)j, j=1...n.  

Let yj(kΔT), k = 0, 1,2 … be the discrete samples 
of the displacement of the j-mass. ΔT is the sampling 
interval. Then the observations y(kΔT) can be 
represented by an ARMA model: 

 

∑ ∑
= =

=−=−
p

i

q

i
ii aitxbitya

0 0
0 1),()(  (8) 

 
 
 

The AR characteristic equation of (8) can be written  
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where 
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*
jμ is the complex conjugate of jμ and i = 1− . 

 
From Eq. (10) can following expressions be derived 
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By adding the two equation in (11) 
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By subtracting the two equation in (10) 
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Finally, divide Eq. (14) to Eq. (13) to obtain 
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Divide now Eq. (12) to Eq. (15) 
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Replacing 2)( jopξ in (12) jop )(ω can be calculated as 
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The irrefutable advantages of the approach presented 
in this section are summarized below: 

• Provide a robust tool for discrimination between 
forced and self-exciting oscillations. 

• Tracking of the time-varying dynamics and 
hereby readily to be implemented in 
recursive schemes for real time identification 
and control. 

• Capable of ‘‘directly’’ capturing the underlying 
structural dynamics responsible for the non-
stationary behaviour and for further 
characterizing the process performance in 
term of quality and productivity. 

• Parsimonious management of information 
acquired as models may be represented by a 
limited number of parameters. 

• Flexibility in fault diagnosis, as they allow for 
the use of the broad class of parametric 
diagnosis techniques. Extension to other 
purposes such as development of diagnostic 
technique for machine tool maintenance. 

3. EXPERIMENTS AND RESULTS 
 
 A series of experiments were carried out with 
the purpose of investigating the capability of model-
based identification and in particular ARMA models 
to capture the dynamics of machining system. The 
model-based identification method is applied for 
analysis of face milling of prehardened steel. This 
work material with hardness of 46HRC is used for 
manufacturing of moulds and dies and therefore its 
machining requires a careful control of surface 
characteristics. Both off-line and in-process 
identification methods were used to identify the 
physical parameters describing the machining 
dynamics. 
 

3.1 Experiment setup 
 
The machine tool used in the milling experiment 

was a vertical three-axes machining center with a 
5000 rpm spindle equipped with an ISO 50 taper. The 
acoustic sound [12] and the three-component 
vibration from the spindle were recorded during 
machining operations. The milling cutter (L = 70 mm 
and D = 20 mm) was a three-tooth solid carbide end 
mill. Coated inserts (nose radius: 1.6 mm) with grade 
R390-11T3 16E-PM GC 1030 equipped the cutter. 
Cutting parameters were feed: 0.12 mm/tooth, spindle 
speed: 2200, 2300 and 2400 rpm, width of cut: 0.5, 1, 
1.5, 2 and 3 mm. The workpiece, Fig. 1, was made of 
prehardened steel Toolox® 44. To ensure evenly 
distributed clamping forces, a magnetic table was 
used as fixture. Prismatic workpieces with the total 
dimension of 250x200x60 mm were ground on the 
bottom side to ensure a good contact condition on the 
magnetic table and were prepared for stepwise 
increasing of the axial depth of cut from 1 to 8 mm 
(see Fig. 1). 
 

 
 

Fig. 1: Workpiece was prepared for stepwise 
increasing of axial depth of cut between 1 mm and 

8 mm during each run. 
 
As known, chatter is always generated close to a 

structural natural frequency. Instability is likely to 
occur in the weakest mode or modes of the structure. 
Normally these modes can be related machine tool 
structure such as tool, tool holder and spindle. 
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Experimental Modal Analysis (EMA) was used to 
identify those modes natural frequency and damping 
ratio. The first natural frequency mode is about  
1400 Hz and is related to the system tool – tool holder 
and while the second natural frequency mode is about 
2200 Hz and is related to the tool and tool clamping. 
In Fig. 2 the power spectrum (waterfall diagram), 
representing acquired acoustic signal from down 
milling test with 1 mm width of cut and spindle speed 
of 2200 rpm, is illustrated. The figure clearly shows 
power concentrations around tooth pass frequency 
(and its harmonics), tool- and tool – tool holder- 
operational frequencies (compare with EMA). The 
tooth passing frequency and its harmonics, 
corresponding to the forced excitation, is the 
dominant frequency during stable machining. By 
applying a bandpass filter and separating the tooth 
passing frequency from the tool and tool holder 
operational frequencies, lower model order can be 
used to detect operational parameters. 

 

Tooth passing 
frequency

Tool and Tool holder 
operational frequency

Tool operational
frequency

Depth of 
cut

1 mm

2 mm

3 mm

4 mm

5 mm

6 mm

7 mm

8 mm

 
 

Fig. 2: Power spectrum (waterfall diagram) over 
machining sound. It shows 23 seconds machining 

with increasing depth of cut. It increases in steps of  
1 mm to a maximum of 8 mm. 

 
3.2. Off-line ARMA modelling and parameter 

estimation 
 
ARMA models of an order determined by the 

AIC informatics criterion [1] are fitted to the acquired 
signals by help of Gauss-Newton algorithm [6]. From 
the estimated model parameters, dynamic 
characteristics of the machining system are calculated. 

In the off-line identification approach the response 
signal is fitted into eight different models 
corresponding to each step of depth of cut (1 to  
8 mm). Samples are always taken from the middle of 
each step to ensure stable vibratory levels. The 
reliability of the identified models is reflected by 
either plotting the residual curves for each model or 
by evaluating the standard deviation for each 
parameter. In Table 1 model parameters along with 
the standard deviation are displayed for the real 
machining data. The standard deviation for each 
individual AR (a1 to a8) parameter is in largest case 
(a8) ±0.23%. This reflects a good representation of 
data. 

 
Table 1. ARMA 8,7 parameters representing real 

machining 

 
The dynamic parameters, frequencies (fop)j and 

damping ratio (ξop)j are determined by solving the 
corresponding ARMA characteristic equation of the 
recorded acoustic sound. Then each pair of roots 
corresponds to a mode of vibration defined by the 
operational- frequency and damping ratio. The most 
significant three identified pairs of an ARMA 8,7 
model are presented in Table 2 and depictured in 
Fig.3. 
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Fig. 3: Identified operational damping ratios from 
machining with stepwise increasing depth of cut, each 

model at three frequencies. 
 
 

 

AR parameters representing real machining  
a1 a2 a3 a4 

-5.951 +17.05 -30.2 +35.98 
±0.0023 ±0.0121 ±0.0210 ±0. 0453 

a5 a6 a7 a8 
-29.47 +16.23 -5.528 +0.9062 

±0.0447 ±0.0289 ±0.0113 ±0.0021 
MA parameters representing real machining  
m1 m2 m3 m4 

+1.552 +1.613 +1.242 +0.2331 
±0.0064 ±0.0080 ±0.0168 ±0.0143 

m5 m6 m7 
-0.1136 -0.1767 -0.0104 
±0.0169 ±0.0070 ±0.0067 
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3.3. In-process parameter estimation based on 
recursive ARMA modelling 

 
Recursive or sequential estimation of ARMA 

model parameters is a critical condition for in-process 
monitoring and control of machining systems. As 
discussed earlier, estimation of the key dynamic 
parameter, operational frequencies and damping 
ratios, offers a robust criterion for discrimination 
between systems of different types. In an in-process 
model identification scheme, these dynamic 
parameters can be used to monitor the stability of a 
machining system or to optimize stable cutting 
conditions with respect to surface roughness.  

As the sampling frequency can be rather high in 
milling (12 kHz or higher), the implementation of 
recursive algorithms requires substantial efforts in 
terms of computational resources and accuracy, as 
well as the convergence and stability of the 
algorithms. In order to track time-varying machining 
systems, the identification algorithm must be more 
‘alert’. Since the parameter estimation is sensitive to 
random disturbances in the measurements, the design 
parameters controlling the trade-off between alertness 
and noise sensitivity must be carefully adjusted. 

The dynamic properties of the system’s response 
are computed from the ARMA model transfer 
function by separating the AR component [8]. In the 
down milling experiment with acoustic sound 
recorded as shown in Fig. 4a, the axial depth of cut is 
stepwise increased from 1 to 8 mm. Due to the 
increasing of the depth of cut, the system approaches 
the stability limit. Three critical frequencies are 
identified in a recursive ARMA 6,5 identification 
scheme, ∼1100 Hz corresponding to the combined 
tool-tool holder-spindle natural frequency, ∼1400 Hz 
corresponding to the combined tool-tool holder 
natural frequency, and ∼2200 Hz corresponding to the 
tool natural frequency. In Fig. 4b the tracking of the 
variation of the second operational frequency and the 
corresponding damping with respect to the variation 
of the depth of cut are illustrated. Figure 4c shows 
similar variation of the third operational frequency 
(tool frequency) and the corresponding damping ratio. 
The dynamics of the machining system revealed in 
the latter figure is dominated by the tool vibration 

mode. The damping variation computed from the 
ARMA models is able to track in real time the 
variation of the system dynamics. As the system 
approaches the limit of stability the damping ratio is 
close to zero. It is important to stress again that the 
damping ratio computed from the ARMA models 
represent the overall damping, i.e. join system, elastic 
structure-cutting process. 

Finally it must be mentioned that the results of 
the recursive identification were very similar to those 
produced by the off-line identification which 
demonstrates the high reliability of the presented 
procedure. 

 
(a)

(b)

(c)

Increasing depth of cut

 
 

Fig. 4: In-process identification of a face mill 
operation with depth of cut variation from 1 to 8 mm. 
(a) Sound pressure level measured by a microphone, 
(b) tracking the variation of the second operational 
frequency and damping ratio and (c) tracking the 
variation of the third operational frequency and 

damping ratio. 

 
Table 2. Off-line identified dynamic parameters, frequencies (fop)j and damping ratios (ξop)j 

 
Depth of 

cut a 
[mm] 

Operational 
frequency 
(fop)1 [kHz] 

Operational 
damping ratio 

 (ξop)1 

Operational 
frequency 
(fop)2 [kHz] 

Operational 
damping ratio 

 (ξop)2 

Operational 
frequency 
(fop)3 [kHz] 

Operational 
damping ratio 

 (ξop)3 
1 1.11 0.057 1.46 0.053 2.16 0.026 
2 1.08 0.046 1.42 0.033 2.20 0.024 
3 1.09 0.098 1.41 0.063 2.21 0.0039 
4 1.02 0.056 1.46 0.045 2.21 0.0054 
5 1.04 0.077 1.40 0.032 2.23 0.0048 
6 0.97 0.110 1.34 0.042 2.21 0.0039 
7 1.07 0.036 1.50 0.088 2.22 0.0032 
8 1.03 0.019 1.47 0.048 2.22 0.0037 
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3.4. ARMA parameter estimation for surface         
roughness characterization 

 
The produced roughness is the sum of two 

independent effects: (1) the ideal surface roughness as 
a result of the geometry of tool and feed rate and (2) 
the natural surface roughness as a result of the 
irregularities in the cutting operation. Vibration of the 
machine tool, defects in the work material, wear of 
the tool or variability in chip formation contribute to 
the irregularities of the surface. In a stable milling 
operation the vibration period for each cutting edge is 
equal to the tooth passing period. In such conditions, 
the configuration of material removal is the same for 
each tooth, giving an equal cutting force. If, however, 
the milling operation is unstable, the surface profile 
will be ‘modulated’ by frequencies close to the 
natural frequencies of the weakest mode or modes in 
the combined system tool-tool holder-spindle-
workpiece (normally represented by the tool or tool 
holder modes). In the surface profiles for stable and 
unstable (see Fig. 5) down milling this occurrence can 
be noticed. 

 
(a)

(b)

 
 
Fig. 5: (a) Surface profile for stable and (b) unstable 

face milling operation. 
 

In the following experiment, the identified 
dynamic parameters of a down milling operation are 
correlated to surface roughness. Width of cut was 
chosen to 1.5 mm and feed per tooth was 0.12 mm. 
As the machining proceeds, operational damping ratio 
variations follow those of the depth of cut. As shown 

in Table 3 and visualised in Fig. 6, the damping ratio 
accurately tracks the variations in the surface finish. 

 
Table 3. Correlation between operational damping 

ratio and surface roughness 
 

 

1 2         3        4        5        6        7         8  
Depth of
cut [mm] 

Ra

Rz

ξop

 
 

Fig. 6: Calculated operational damping ratio (ξop)j and 
the surface roughness Ra, Rz of the machined 

workpiece visualised on the acoustic sound produced 
during machining. 

 
3.5. Classification of machining states based 

on ARMA parameters 
 

In this section we study how AR parameters 
from ARMA models can be used to discriminate 
between different machining system states. The 
concept used here for classification is by distance 
functions. Pattern classification by distance functions 
is a concept well developed in automatic pattern 
recognition. Considering M pattern classes and 
assuming that these classes are represented by 
prototype pattern z1, z2, …, zm, the Euclidean distance 
between an arbitrary pattern vector x and the ith 
prototype is given by equation 
 

)()( iiii zxzxzxD −′−=−=  (18) 

 
A minimum-distance classifier computes the 

distance from a pattern x of unknown classification to 
the prototype of each class, and assigns the pattern to 
the class to which is closest. In the case of three-class, 
spindle idle (no machining), machining at 1 mm depth 

Depth of cut 
 a [mm] 

Operational 
damping ratio (ξop)j 

Ra 
[µm] 

Rz 
[µm] 

1 0.097 0.22 1.47 
2 0.064 0.21 1.57 
3 0.036 0.81 3.74 
4 0.035 1.23 4.39 
5 0.060 0.29 1.86 
6 0.087 0.23 1.31 
7 0.080 0.20 1.26 
8 0.072 0.23 1.50 
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of cut and machining at 2 mm depth of cut, the linear 
decision surface separating every pair of prototype 
points zi and zj is the hyperplane which is 
perpendicular on the line segment joining the two 
points. In the case presented in this paper the decision 
plane is normal to the line connecting the centroid 
points calculated as the mean values of the all points 
belonging to a certain class. 

Figure 7 shows the classification results from 
modeling of several machining test. Machining and 
spindle idle states show clear clustering properties. 
The three patterns, spindle idle (off machining), 
machining at 1 mm depth of cut and machining at  
2 mm depth of cut are perfectly disjoint. In all tests 
the workpiece dimensions and materials were similar. 

 

Spindle idle

Machining: 1 mm 
depth of cut

Machining: 2 mm 
depth of cut

 
 

Fig. 7: Classification results from modelling several 
machining systems states. Identified model 

parameters (a1, a2 and a3) representing a machining 
system going from spindle idle to machining state. 

 
4. DISCUSSION 

 
Compared with other methods for analysis of 

machining systems, the implementation of model 
based identification brings the following benefits: 

• Able to capture the dynamic interaction between 
the elastic structure and machining process, 
therefore can be readily applied in normal 
cutting operations. 

• Operational dynamic parameters, frequency and 
damping, can be straightforward computed 
from model’s parameters and used as a 
discrimination criterion between various 
machining states. 

• In the recursive form the method can be used to 
track time-varying machining systems and 
hereby used for real time monitoring, control 
and optimization. 

• Capable of ‘directly’ capturing the underlying 
structural dynamics responsible for the non-
stationary behaviour and for further 

characterizing the process performance in 
term of quality and productivity. 

 
5. CONCLUSIONS 
 
The desired mathematical model of the 

machining system presented in this paper is based on 
the data obtained during normal operational 
conditions. In this way we take a step beyond the 
classical method of analyzing the dynamics of a 
machining system, which separately identifies the 
structural and process parameters. 

The model-based identification technique 
represents a robust approach for the characterization 
of the dynamic behaviour of machining systems. The 
results from experiments demonstrate the feasibility 
of the operational damping ratio (and related 
frequency) as a measure for tracking the variability of 
a machining system and to be used as criterion for 
discrimination between various dynamic systems. The 
model-based identification provides a robust tool for 
discrimination between forced and self-exciting 
oscillations. 
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