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ABSTRACT 
The helical surfaces, especially those with identically anti-homologous flanks, 

may be generated with end mill tools. The constructive advantages and the using 

domain of these tools are known. 

In this paper, are presented an algorithm, based on the Bezier approximation 

polynomials for the tool’s profiling designated to generate helical surfaces. The 

algorithm regarding a reduced number of points on the in-plane generatrix of the 

helical surface to be generated (3 or 4 points) may constitute a simple and fast 

variant for this tool’s profiling. 

Is analysed the cylindrical tool’s profiling —planning tools— for helical surface 

in the same approach manner. 

Are presented numerical examples, based on a software dedicated for this 

problem and realized in the java programming language, which proof the proposed 

method quality, versus a theoretically method. 
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1. INTRODUCTION 
 

There are multiple solutions when the helical 

surfaces, especially those which form flutes with 

identical anti-homologous flanks (the involute flanks 

of the teeth of helical gear, flanks of the modulus 

thread, thread for ball circulating screw) are generated 

by milling with end mill tool [2], [4], [6]. 

The constructive simplicity of the tool [4] which 

generate, in the cutting movement, a peripheral 

revolving surface, generating simultaneous the both 

gauge flank, the small number of the tool (often only 

two teeth) make the machining and use of these tool’s 

type to be more advantageous opposite to a disk tool. 

Obviously, the productivity of machining using this 

tool (end mill) is more reduced, and, as follow, this 

solution should be economically used only for a small 

number of the same type pieces [3], [4]. 

The profiling of this tool’s type often follows 

the same steps as for disk-tool’s profiling, the 

particularities of the end mill tool imposing its 

profiling algorithm. 

Exist situations when, for helical surfaces 

machined as unique pieces, or for repairs, when the 

end mill realization is too expensive, and as follow is 

imposed to choose a more simple method, the milling 

being replaced with the planning of helical surface 

flank, generating a cylindrical surface, reciprocally 

enwrapping with the helical surface, generating with 

planer tool of the helical surface. 

 In the both situations, the surface to be 

generated may be known by a small point number, 

often as results of the measuring of a generatrix of 

this (not necessary an in-plane generatrix) allowing a 

discrete expression for the helical surface to be 

generated. 

In this paper, is proposed a methodology for end 

mill tool’s profiling and planer tool for the case of the 

discrete expression with a small points number (3 or 4 

points) of its generatrix profile. 

One of the goals is to compare the numerical 

results obtained with the proposed algorithm with the 

results obtained with profiling theoretically methods 

[2], [6], for the same surfaces types, in order to proof 

the new method quality. 

 

2. END MILL TOOL’S PROFILING 
 

The in-plane generatrix of the helical surface, 

here regarded in XY plane of the reference system, is 

substitute by a Bezier polynomials, with 2 or 3 

degree, regarding the point’s number considered 

(measured) along the generatrix (3 or 4 points), [1]. 
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They are defined the axis and the surface’s 

helical parameter, for which will be determined the 

form of a revolving surface reciprocally enveloping 

with  V Z


 axis and p parameter, as so as the point’s 

coordinates: 

 , , ,; ;A A B B C CA X Z B X Z C X Z            (1) 

on the generatrix known in discrete form, see Fig. 1. 

If we mark with: 
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the Bezier substitutive polynomials [1], then, the 

helical surface with V


 axis and p helical parameter 

may have an expression, principled, in form: 

  
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 (3) 

 

 
 

Fig. 1. End mill tool, reference system and tool’s axis, 

A


 
Note: 

- The ( )X   and  Z   polynomials will be 

identified, regarding the known coordinates on G 

generatrix; 

- Is possible to know also a spatial generatrix (a 

spatial curve), by simultaneous considering of its 

projections on the reference system’s planes. 

Starting from the (3) forms of the helical 

surface,  ,  , may be defined the parameters of 

the normal at the substitutive surface, in forms: 
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 (4) 

The partial derivatives are calculated from (3) 

form of the helical surface. 

For the tool’s axis definition 

 A i
 

 (5) 

and for the position vector of the current point on the 

 ,  , surface, 

      , , ,r X i Y j Z k       
   

 (6) 

the enwrapping condition [5], [6],  

 , ,N A r q 
  

 (7) 

with q—positive and very small (for example 
21 10q   ), may be bring in form 

 
 

   sin .

Y

Z

Z p N

X N q
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 
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 (8) 

Is determined the axial section of end mill 

cutter, see fig. 2: 

 
   

   
22 2

cos ;

( ) sin .
A

H X

S
R Y Z p

 

   

 

      

(9) 

for  and  couples of values which meets the 

condition (7). 

In all the presented algorithm stages, the profiles 

calculus is made only for 3 or 4, considered points 

belong to the profile. 

For the axial section (9), known in discrete 

form, for 3 or 4 points on this, its made an 

approximation by a second (third) degree Bezier 

polynomials, determining a representation form for 

this. 

 

 
Fig. 2. Axial section of end mill cutter 

 

2.1. End mill tool for generating 

       a worm with circular axial section 
 

This surfaces type appears in construction of 

ball circulating screw or screws for traction with 

increased fatigue resistance. 

They are presumed known (measured) the 

coordinates of three points on the helical surface 

generatrix profile, see Fig. 3 and table 1. 

The center coordinates of circle arc which 

represent the discreetly known generatrix of the 

helical surface are 

  ,0,
C CC O OO X Z . (10) 
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 a). b). 

 

Fig. 3. a). Generating profile — circle arc in axial 

plane; b). Ball circulating screw 

 

The identification algorithm for the Bezier 

polynomial substitutive of the helical surface 

generatrix profile is presented in table 1.  

 

Table 1. Coefficients for a 3
rd

 degree polynomial 
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As so was previously show, the p parameter 

value is known ( 3.18p  ). 

In Fig. 4 and table 2, are presented the axial 

profile of end mill tool in a presentation approximated 

by 3
rd

 Bezier polynomials regarding the same profile 

determined by an analytical method. Also, is 

presented the profiling error value regarding the 

profile determined by an absolutely rigorous 

analytical method, for: 

 52,0,0 ;CO   R=8 mm;  

D=60 mm; p=3.18 mm;  

0A  ; 0.87266D   rad. 

Table 2. 

Approximated  

profile 

Theoretical 

 profile 

λ 

H 

[mm] 

R 

[mm] 

H 

[mm] 

R 

[mm] 

Error 

[mm] 

0.000  44.000  0.080  44.000  0.080  0.000  

 44.011  0.422  44.010  0.423  0.002  

           

 44.286  2.109  44.286  2.111  0.002  

0.333  44.349  2.326  44.350  2.329  0.002  

 44.384  2.438  44.385  2.440  0.002  

           

 45.260  4.290  45.259  4.288  0.002  

0.666  45.319  4.382  45.318  4.381  0.002  

 45.451  4.575  45.449  4.573  0.002  

           

 46.579  5.859  46.577  5.859  0.002  

1.000  46.836  6.085  46.836  6.085  0.000  

 

 
 

Fig. 4. Axial section of the mill end tool 

 

 The algorithm is completed with specialized 

software in java programming language. A 

specifically applet is presented in fig. 5. 

The dialog boxes allow the defining of: 

- OC center coordinates of axial profile; 

- R radius value [mm]; 

- θA and θD  angles values; 

- external surface diameter, D [mm]; 

- p helical parameter value [mm]. 

The applet allow to draw the axial section of end 

mill tool (H, R); determination of profiles coordinates 

and the method profiling error level against a 

theoretically method [Nikolaev] [5]. 

In the applet a helical surface is presented, the 

end mill tool’s axis and the normal at discreetly 

helical surface. 

Note: When the points are measured on the helical 

surface’s generatrix, be A; B; C; D these points, we 

defined the  parameter values by: 

 ; ,B C

AB AB BC

AB BC CD AB BC CD
 


 

   
(11) 

where AB , BC , CD   are the AB, BC and CD 

straight line segment modulus. 
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Fig. 5. Applet for end mill tool’s profiling 

 

 

3. CYLINDRICAL TOOL’S  

    PROFILING (PLANNING TOOL) 
 

The cylindrical tool, (the planning tool) which 

generate in cutting movement a cylindrical surface, 

reciprocally enveloping with a helical surface known 

in discrete form, may be profiled based on an 

algorithm similarly with those previously presented. 

For an in-plane generatrix, defined in discrete 

form and approximated by a Bezier polynomial with 

small degree, as result of knowing a small points 

number on the axial generatrix of the helical surface 

(3 or 4 points), is accepted as expression form of 

helical surface presented in discrete form, see the 

form (3). 

The characteristically curve, C, on the  

helical surface expressed in discrete form, as 

representing the curve tangent at the cylindrical 

surface (in Fig. 6, surface with generatrix 

perpendicularly on PT plane and with C  as directrix) 

is defined based on a specifically enwrapping 

condition [5], [6]: 

 0N t  
 

. (12) 

The PT plane, crossing plane of the cylindrical 

surface, is a plane with contain the X axis and admit 

as normal the t


, the unitary vector of tangent at the 

helix with external diameter of helical surface . 

In form (12), the Nikolaev condition [5] 

specifically for this enwrapping problem type was 

marked: 

N


 — normal at the helical surface expressed 

in discrete form; 

t


 — the unitary vector of the cylindrical 

surface, 

 cos sint j k    


, (13) 

 arctan
e

p
D

    
 

 (14) 

where: 

  - p is the helical parameter of surface (known); 

  - De — external diameter of the helical surface. 

 

 
Fig. 6. Cylindrical surface and characteristically curve 

 

In this way, the (3) and (12) equations assembly 

represent the characteristically curve of the two 

surfaces: the helical surface, expressed in discrete 

form and the cylindrical surface, as peripheral primary 

surface of the planning tool for helical surface 

generation. 

In principle, the C  characteristically curve is 

expressed by its point’s coordinates, 
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 , (15) 

for the helical surface approximation with a 2
nd

 degree 

polynomial. 

 

3.1. The S cylindrical surface 
 

Being known the cylindrical surface generatrix 

direction, t


 and the characteristically curve form, C, 

expressed in discrete form, is defined the S surface, in 

form: 

 R r k t  
 

, (16) 
where 

 C C C
r X i Y j Z k       

 
, (17) 

vector of discrete points on the C characteristically 

curve, k variable parameter. 

Result, in principle, the S surface coordinates, 

 

;

: cos ;

sin ,

CS

CS

CS

X X

S Y Y k

Z Z k













 

 

 (18) 

which, by coordinate transforming 

  1 1X X   , (19) 

lead to: 

 
1 1 1

1

1

1

;

cos sin ;

sin cos ,

S

S S

X Y Z

S S

X X

S Y Y Z

Z Y Z

 

 



 

  

 (20) 

representing the discrete cylindrical surface S in 

X1Y1Z1 reference system, see figure 7. 

The X1Y1Z1 reference system is the reference 

system where the crossing plane of the cylindrical 

surface, PT, is overlapped with X1Z1 plane. 

The crossing section of discrete cylindrical 

surface (20) is obtained from condition 

 1 1Y q , (21) 

with q1 arbitrary, positive and small, in form: 

 1

1

;

sin cos ,
T

S

P S S

X X
S

Z Y Z 



  
 (22) 

for k variable, see fig. 7. 

 
Fig. 7. Characteristically curve 

 

3.2. Cylindrical tool for generation  

       of helical surface with circular  

       profile in axial plane 
 

The helical surface is expressed in discrete form 

by an in-plane generatrix known by its points, fig. 8. 

 
Fig. 8. Helical surface with circular generatrix in axial 

plane 

 

Are presumed know the coordinates of helical 

surfaces generatrix. 

Is identified the Bezier polynomial for G 

generatrix approximation, see table 2, for a 2
nd

 degree 

polynomial or similarly for a superior degree 

polynomial. 

On the helical surface: 

 

( , ) ( ) cos ;

( , ) ( )sin ;

( , ) ( ),

X

X

Z

X P

Y P

Z P

   

   

  



 



 (23) 

with PY(), PZ() substituting polynomials for discrete 

generatrix; 

 — variable angular parameter, is determined the  

and  values which satisfied the (12) condition, 

 cos sinY ZN N q    (24) 

q positive and small enough. 

In this way is determined the characteristically 

curve on the S surface, helical surface discreetly 

expressed, and, from here, by (19), coordinates 

transforming, the crossing section form of the 

cylindrical surface SPT. 

In Fig. 9 and table 3, are presented the form and 

coordinates of the crossing section of cylindrical 

surface reciprocally enveloping with a worm with 

dimensional characteristics: 

- coordinates of points belong to axial section, in 

mm – for a 3
rd

 degree polynomial, see figure 3.a:  

44.01 44.36
; ;

0.39 2.38

45.46 46.85
; ;

4.61 6.12

A A

A A

C D

C D

X X
A B

Y Y

X X
C D

Y Y

 

 

 

 

 

- helical parameter, p=3.18 mm. 

It was elaborated a specialized software in java 

programming language, for this case, as applet, 
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similarly with those presented in Fig. 5, where is 

determined: 

- the crossing section of cylindrical surface, X,Z; 

- the planning tool’s profile coordinates [X1,Z1]; 

- the profiling error level against a fundamental 

analytical method (Nikolaev). 
 

 
Fig. 9. Cylindrical tool’s profile 

 

Table 3. 

Approximated 

profile 

Theoretical 

profile λ 

X1 [mm] Z1 [mm] X1 [mm] Z1 [mm] 

Error [mm] 

0.000 44.010 0.395 44.010 0.396 0.000 

44.033 0.720 44.032 0.720 0.001 

           

44.353 2.312 44.352 2.311 0.000 

0.333 44.420 2.516 44.420 2.515 0.000 

44.456 2.620 44.456 2.620 0.000 

           

45.341 4.354 45.341 4.354 0.000 

0.666 45.400 4.439 45.400 4.439 0.000 

45.530 4.619 45.529 4.619 0.001 

           

46.635 5.808 46.634 5.807 0.001 

1.000 46.886 6.015 46.886 6.014 0.001 

 

The numerical results are presented against the 

results obtained using a fundamental method for 

planning tool’s profile calculus. 

The maximum error is 0.002 mm obtained for 

=0.125; 

Is obviously that the tool’s profile precision is 

exactly enough, and, for certain surfaces types, the 

poles representation method for in-plane generatrix of 

surfaces may be an alternative to the analytical 

method for helical surface generating tool’s profiling. 

The proposed method is characterized by the 

fact that the point number is relatively small, 3 or 4 

points, the determination precision increasing may be 

obtained using substituting polynomials with superior 

degree. 

The method has the advantage that allows the 

approach to the helical surface generation tool’s 

profiling, starting from the known of some points 

measured on these surface. 

 

 

 
Fig. 10. Applet for cylindrical tool’s profiling 

 

4. SOFTWARE IMPLEMENATION 
 

A software application was developed in Java 

programming language implementing the algorithm 

above. In Figs. 5 and 10 are presented specifically 

screenshots including representations of analytically and 

numerical generatrix for end mill and planning tools. 

Numerical results can be exported to comma separated 

values files. 

 

5. CONCLUSIONS 
 

The helical surfaces generating tools profiling method 

(end mill tool and cylindrical tool) is characterized by: 

- the method is fundament on the reciprocally 

enveloping surfaces theory; 

- the algorithm is applicable for helical surfaces 

known even for a small point number (3 or 4 points) which 

defined straight line segments or curve arcs; 

- the Bezier polynomials coefficients for discreetly 

known generatrix are presented in tables; 

- the method may be used also in case of points 

known by measuring; 

- the tool’s profiling precision, by the proposed 

method, is equivalent with results obtained using an 

analytical method; 

- the method is fast and easy to apply. 
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