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ABSTRACT 
 

The paper presents a comparison between the stress states obtained in an elastic 
bent plane with two identical circular holes. The plane is bent in a manner that the 
neutral axis of the plane is normal to the axis formed by the two centres of the holes, 
in the middle point. For the analytical solution the elastic potential is obtained as a 
sum between the elastic potential of the compact plane and an auxiliary potential, 
having a form given by Jeffery. The boundary conditions were imposed to the 
resulting potential. The plane is loaded with a linear distributed force. For the 
analysis with finite elements, the load was applied using two concentrated couples. 
The effect of the two holes is strictly locally and does not depend on the loading 
mode, reflecting the Saint-Venant principle. The fact is confirmed by the perfect 
agreement between the plots of the stresses, obtained by the analytical and 
numerical methods. The principal shearing plots are especially useful as they may 
be obtained experimentally as well, by photoelastic method, namely isochromatics 
curves. Finally, theoretically and numerically isochromatics are compared to the 
experimental ones obtained by Mesmer, cited by Frocht.  
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1. INTRODUCTION 

 
 The aim of the paper is finding the stress state in 
an elastic plane with two identical circular holes.  The 
elastic plane is subjected to pure bending and the 

neutral axis is also a symmetry axis for the two holes, 
as shown in Fig. 1.  The stress state is found both by 
means of analytical and numerical methods and the 
results are compared with experimental data given in 
literature. 

 

 
 

Fig. 1.  Geometry and loading 
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2. THEORETICAL REMARKS 
 
The analytical solution of the problem is found using 
bipolar co-ordinates, ( βα , ), correlated with Cartesian 
co-ordinates, ( y,x ), by the following relations: 
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In bipolar co-ordinated, written under the form (1), 
the level curves .const=α  and .const=β  are 
difficult to recognise.  The equation (1) can be written 
in complex form as it follows: 
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where a point from the Cartesian plane Oxy  is 
characterised by affix iyxz += .  Another form for 
mapping (1) , due to Spiegel, [1], is: 
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(3) 

The first relation from equations (3) represents a 
circle with the centre on Oy axis in the point 
(0,a/th(α)), with radius a/sh(α), and the second 
relation is a circle with the centre on Ox axis, in the 
point (a/tan(β),0), having the radius a/sin(β).  Both of 
the level curves families are plotted in Fig. 2 and it 
can be seen that all the circles of the second family, 
( .const=β ), have the same radical axis, that is they 
all pass through the points )a,0(A1  and )a,0(A2 − . 
The elastic compact plane bended at infinity has 
Airy’s function characteristic, in Cartesian co-
ordinates, )y,x(U .  This function is necessary for 
constructing the Airy’s function for the considered 
plane, with holes.  The form of the Airy’s function is: 
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where m is a constant with measured in N/m.  The 
potential (4) is written in bipolar co-ordinates and  
 
 
 

divided by J, as Jeffery shows, [2], where J has the 
form: 
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Fig. 2.  Level curves of bipolar co-ordinates 
The boundary conditions are: 
 

0),(
0aa =βασ α±= ; 

 

(6.a) 
 

0),(
0aa =βατ

α±=β , 
 

(6.b) 

 
where )r2/d(αcosh±=α  represents the contour of 
the holes in bipolar co-ordinates.  
The potential for the compact elastic plane in bipolar 
co-ordinates is: 
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In order to impose the above boundary conditions, 
Jeffery, [2], demonstrates that the Airy’s function, 

),(V βα , is obtained adding an auxiliary potential 
),( βαΦ to the potential of the compact plane, 
),(U βα .  The auxiliary potential, proposed by 

Jeffery, has the expression: 
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The coefficients of the potential ),( βαΦ  are 
determined imposing both boundary conditions and 
the continuity conditions at infinity (as the domain is 
boundless) for stresses.  The last condition can be 
mathematically expressed under the form:  
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The condition (9) is equivalent to the relation: 
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With the potential )β,α(V  found, the stresses can 
be determined in bipolar co-ordinates, using the 
relations: 
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A powerful method for validation of the analytical 
results is the photoelastic method.  It consists in 
comparing the theoretical and experimental 
isochromatics (defined as the curves where 

.constmax =τ ) and isoclinics (the curves where the 
principal stresses have the same direction).  
The equations for the isoclinics in Cartesian co-
ordinate, given by Frocht, [3], are: 
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In the present paper only the qualitative aspects are 
envisaged, by comparing analytical, numerical and 
experimental isochromatics patterns.   
The isochromatics have the following relation: 
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The numerical procedure allows finding the Cartesian 
stresses.  For a quantitative comparison between 
numerical and analytical results, the relations of the 
Cartesian stresses are needed.  The change of the 
stress tensor components from bipolar to Cartesian 
co-ordinates is: 
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3. RESULTS 

 
The analytical isochromatics obtained in the 

present paper are given in Fig. 3a, and compared to 
the experimental isochromatics, given by Mesmer and 
quoted by Frocht, [3], as shown in Fig. 3b.   

The stress concentrator effect of the holes is 
pointed out in Fig. 4 and Fig. 5, where the hoop stress 
variation on the contour of the holes is plotted.   

Both evaluations show a very good agreement 
between numerical and analytical (exact) results.  

The bending of an elastic part with two holes 
was analysed using finite element method, using 
CATIA.  

The stress concentration factor can not be 
determined using the classic definition, as the normal 
stress due to bending varies, depending on the 
position of the fibre.   In order to appreciate the 
concentrator effect of the holes, the maximum hoop 
stress was divided by the stress for the compact plane, 
from the point where the centre of the hole would be, 
under the same loading, was represented. The results 
are shown in Fig. 6.  Due to hyperbolic functions in 
the relations of the stresses, the calculus was made 

only for a ratio distance/radius smaller than 10.  A 
very interesting issue is the tendency of asymptotic 
variation of this dimensionless stress, towards a value 
around 3.  This observation may be used in 
simplifying the calculus of the maximum hoop stress, 
meaning that a rapid estimation of maximum hoop 
stress can be find by only multiplying the stress form 
the compact plane corresponding to the centre of the 
hole with 3, and the the evaluation is good enough for 
the holed plane.   
In Fig. 7 the numerical results obtained are compared 
with the isochromatics found analytically, in 
Mathcad.  In Fig. 8, the normal maximum stress 
patterns are presented, both for FEA method, Fig. 8a, 
and for analytically method Fig. 8b. A very good 
agreement between the two methods can be 
emphasised.  Slight differences occur in regions far 
away from the neutral axis, due to different initial 
modelling assumptions of the elastic body: modelling: 
with a finite part in CATIA, (the edge effect can be 
remarked) and modelling with an infinite plane in 
Mathcad.  
 

 

 
(a) 

(b) 

Fig. 3.  Theoretical, (a), and experimental, [3], (b) isochromatics patterns 
 

0 30 60 90 120 150 180 210 240 270 300 330 360
10

7

4

1

2

5

8

11

14

17

2015.3855

-4.5058

0

σ β1k

( )σ β2 k

3600

90 270

.
ϕk

π
180

 
 
 
 
 
 

=

d

r

max( )σ β1

min ( )σ β1

2.2

1

15.386

4.506

 

 



FASCICLE V                                          THE ANNALS OF ‘DUNĂREA DE JOS” UNIVERSITY OF GALAŢI 
 

 127

Fig. 4.  Hoop stress variation on the contour of the holes (case of nearby holes) 
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Fig. 5.  Hoop stress variation on the contour of the holes (case of distant holes) 
 

 
 

 
 

Fig. 6.  Stress concentration factor on the contour of the hole - variation with distance between the two holes 
 

 

 
(a)  

(b) 
 

Fig. 7. Isochromatic patterns obtained with finite element analysis (a) and analytically (b) 
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(a) 

 

 
(b) 

Fig. 8. Normal maximum stresses obtained with finite element analysis (a) and analytically (b) 
 

 
 
 
 

4. CONCLUSIONS 
 
The main conclusions that can be drawn from the 
present work are: 
•  Stress concentration factor of the holes is higher 
than the case when the holes centres are placed on 
neutral axis, [5].  
•  The hoop stress on the contour of the holes in 
points symmetrically places with respect to the 
neutral axis, has the same modulus but with opposite 
signum.  
• The maximum hoop stress appears on the 
contour of the holes, in the bent half-plane and in the 
most remote point from the neutral axis; 
• A very good agreement between theoretically, 
numerically and experimentally obtained results is 
attained, drawing the conclusion that numerical 
methods can provide correct solutions for a certain 
problem where analytical methods are ineffective.  
• It was found the tendency of asymptotic 
variation of the dimensionless stress, towards a 
value around 3.   

 
 
 
 
 
 
 
 
 

 
 
 
 
 
• This observation may be used in simplifying the 
calculus of the maximum hoop stress: a rapid 
estimation of maximum hoop stress can be found by 
only multiplying the stress form the compact plane 
corresponding to the centre of the hole with 3, and 
the evaluation is good enough for the holed plane.   
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