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ABSTRACT 
The present paper first aims of identifying the anisotropic plastic behavior of 

metal sheets by combining the results of classical uniaxial tensile tests and of 
heterogeneous biaxial tensile tests on cruciform specimens. The analysis was 
performed for both steel sheets and aluminum alloy sheets. Then, the material 
parameters are used in finite element simulations to predict the formation of ears in 
the cup drawing test. Very good predictions of experimentally-measured ears are 
obtained for all materials. Finally, a correction of the initial contour is proposed, 
which allows us to prevent the formation of ears at the end of the drawing process. 
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1. INTRODUCTION 

 
 Sheet metals obtained by cold-rolling exhibit a 
crystallographic texture resulting from the elaboration 
process. Therefore, the mechanical behavior of these 
materials is anisotropic, with 3 orthogonal planes of 
symmetry defined by the rolling direction, the 
transverse direction and the thickness direction. In 
particular, plastic anisotropy plays a major role in the 
forming processes that are used to transform flat 
sheets in complex parts, for instance in the automotive 
components, or in domestic appliances. The 
parameter commonly used to characterize this 
behavior is the anisotropy coefficient, or Lankford 
coefficient R , defined in uniaxial tensile tests on 
rectangular sheet specimens by : 

 
3

2

ε
ε

=R        (1) 

where 2ε  and 3ε  are the plastic strains along the 
width direction and the thickness direction of the 
specimen, respectively. In the general case of 
transverse anisotropy, this coefficient depends on the 
angle α between the rolling direction and the tensile 
axis. Material anisotropy is usually characterized by 
determining the three values 0R , 45R  and 90R , 

obtained in uniaxial tension along the rolling direction 
(RD), the diagonal direction (DD) and the transverse 
direction (TD), inclined at 0°, 45° and 90° from the 
rolling direction, respectively. 
 The Lankford coefficient )(αR  is a measure of 
strain-anisotropy. However, plastic anisotropy also 
manifests by stress-anisotropy, i.e., by variations of 
the uniaxial yield stress )(ασ . 
 The effect of plastic anisotropy is clearly 
apparent in the deep-drawing test of cylindrical cups. 
In this test, the formability can be characterized by the 
Limiting Drawing Ratio (LDR), which is the largest 
value of the ratio between initial blank diameter and 
punch diameter that can be successfully reached, 
without necking and failure of the cup. The LDR is an 
increasing function of the average R -value. 
 Another effect of plastic anisotropy is the 
formation of ears and troughs around the cup [1-3]. 
This effect has received two different explanations, 
both of them based on the observation that an element 
of the contour situated at the angle α  from RD is 
submitted to a uniaxial compression in the orthoradial 
direction, defined by the angle 2/παβ +=  from 
RD. The first explanation [4] considers that a higher 
elongation in the radial direction and a lower 
thickening are obtained with a higher value of the 
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Lankford coefficient )(βR . Thus, the formation of a 
ear is expected to be associated with a maximum 
of )(βR . The second explanation [5] considers that 
the shape of the contour is imposed by the shear-strain 
obtained in uniaxial tension/compression at the 
angleβ , which can be quantified by the 

coefficient ββαβ εεβ && /)( =Γ , where αβε&  and ββε&  
are the shear and normal strain-rate components, 
respectively. The coefficient )(βΓ  is linked to the 
angular evolution of the uniaxial yield stress )(βσ  
by: 
 

 
)(2

/)()(
βσ

ββσβ ∂∂
−=Γ     (2) 

 
 Thus, the formation of a ear is expected to be 
associated with a minimum of )(βσ . The two 
explanations lead to the same qualitative predictions 
in a number of situations, for instance, in steels where 
a minimum of )(αR  is observed together with a 
maximum of )(ασ  for 2/0 πα ≤≤ . In this case, 
ears form along RD and TD. However, a quantitative 
assessment of the height of ears is not so clear. In 
particular, the height of ears predicted in numerical 
simulations strongly depends on the plasticity model 
employed, when the model parameters are determined 
in order to fit given values of 0R , 45R  and 90R  
[2,3]. This observation suggests that the evolution of 

)(ασ  should also be taken into account in the 
identification of a model giving a proper account of 
material anisotropy. 
 In this paper, the anisotropy parameters defining 
the shape of the yield surface are identified by means 
of classical uniaxial tensile tests and of heterogeneous 
biaxial tensile tests on cruciform specimens. Then, the 
earing profiles predicted by numerical simulations on 
initially circular blanks are compared with 
experimental ones. Finally, a modification of the 
initial contour is proposed, in order to obtain ear-free 
cups. 
 
 2. EXPERIMENTAL PROCEDURE 
 
 In the uniaxial and biaxial tensile tests, the 
strains at the surface of the specimens were measured 
using an image correlation technique. 
 The uniaxial tensile tests were performed on a 
conventional Zwick tension-compression machine, on 
specimens cut along RD, DD and TD. The Lankford 
coefficient R was then calculated by using the surface 
strains obtained with the image correlation technique, 
and by taking account of the contribution of elastic 
strains and of the assumption of plastic 
incompressibility. 

 The biaxial tensile tests were performed using a 
specific device developed by Ferron and Makinde [6]. 
The device consists of a spatial-arm mechanism 
which can be mounted on a conventional tension-
compression machine and tested in compression to 
generate an equibiaxial stretching state on a cruciform 
specimen, fig. 1. 
 

 
Fig. 1 Schematic view of the experimental device 
 

 
(a) UT/PST specimen 

 

 
(b) UT/EBT specimen 

 
Fig. 2 Biaxial tensile specimens 
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 Two types of specimens were designed, with the 
aim of offering a high sensitivity of the strain fields 
obtained under biaxial stretching to plastic anisotropy. 
The stress range goes from uniaxial tension (UT) to 
plane-strain tension (PST) for the first type of 
specimen (UT/PST specimen, fig. 2a), and from 
uniaxial tension to equibiaxial tension (EBT) for the 
second type (UT/EBT specimen, fig. 2b). 

A number of preliminary simulations have been 
performed to analyze the sensitivity of strain fields 
obtained on biaxial specimens to material anisotropy. 
The first-order physical quantities that control the 
strain fields in UT/PST and UT/EBT specimens are 
the stress-ratios psσ / uσ  and bσ / uσ , respectively, 

where uσ , psσ  and bσ  are the yield stresses in 
uniaxial, plane-strain and equibiaxial tension, 
respectively.  

 
 

3. MATERIAL MODELLING AND 
     IDENTIFICATION STRATEGY 
 
 Since the earlier anisotropic yield criterion 
proposed by Hill [7], anisotropic yield functions of 
increasing complexity have been developed during 
the last 30 years [8-13]. The yield function proposed 
in [11], called FMM model in the following, is 
considered here for material parameters identification. 
It includes 8 parameters (6 reals and 2 integers) for 
defining the adimensional yield surface. 
 The FMM model was originally expressed under 
the assumption of plane-stress conditions. The yield 
surface is defined in principal stress plane ( 1σ , 2σ ) 
using the polar-coordinate representation described by 
the function ( )αθ ,g , where g  is the radius to a point 
of the yield surface, θ  is the polar angle on the yield 
surface, and α  is the angle between orthotropic axes 
and principal stress axes. The principle of this 
description is presented on fig. 3, where the yield 
surfaces are normalized by the effective stress σ , and 
are drawn for different α -values.  
 The function )(θg  for transversely isotropic 
(normally anisotropic) materials is expressed as : 
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and its extension to transverse anisotropy is defined 
by: 
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where k, A, B, a, b and m are real numbers, and 
exponents n and p are positive integers. 
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Fig. 3 Sketch of the yield surface in principal stress 
space (σ1, σ2), for different values of angle α  between 

rolling direction and principal stress axis  s1 
 

 The 3D-extension of the criterion presented in 
[14] is used in numerical simulations, which are 
performed using the Abaqus/Explicit finite element 
code with the VUMAT subroutine. 
 An interesting property of the FMM yield 
function is that, for given values of the Lankford 
coefficients 0R , 45R  and 90R , the evolution of the 
uniaxial yield stress )(ασ  can be strongly modified 
by changing the values of exponents m, n and p, while 
it is almost unaffected by the choice of other material 
parameters. This result will be turned to account to 
split the identification procedure in two steps, as 
proposed below. 
 The strain hardening parameters are first 
identified using the uniaxial tensile tests. Then, the 
following procedure is adopted to identify the 
material parameters of the yield function : 
 
Parameters defining the yield surface :  
 8 parameters : k, A, B, m, n, p, a, b 
First step : analysis of uniaxial tensile tests : 
   Data :    0R , 45R , 90R  
   Procedure : take k = 0, determine the (m, n, p) 
values fitting the evolution of )(ασ   (the parameters 
A, a and b are determined knowing 0R , 45R and 90R ) 
 keep the (m, n, p) values for the continuation 
of identification. 
Second step : analysis of heterogeneous biaxial 
tensile tests : 
   Data :     0R , 45R , 90R , experimental strain fields 
   Procedure : analyse the response surface of the cost 
function to determine the (k, B) pair minimizing the 
difference between experimental and calculated strain 
fields 
 (for each (k, B) pair, A, a and b are re-calculated 
knowing 0R , 45R and 90R ) 
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 4. IDENTIFICATION RESULTS 
 
 Three materials were tested, i.e.: an Interstitial 
Free (IF) steel, a commercial purity aluminum, which 
was annealed for 100 min. at 310°C, and an aluminum 
alloy of the type A 5086 H111. 
 The first step of the identification consists of 
analyzing the uniaxial tensile tests. For IF steel and 
aluminum, strain-hardening was described at best 
with the Swift law: 
 

 ( )NpK εεσ += 0      (5) 
 

where K , 0ε  and N  are material constants. For 
type A 5086 aluminum alloy , the Voce law was used: 
 
 ( )p

s εβασσ exp1( −=     (6) 

 
where sσ , α  and β  are material constants. The 
strain hardening parameters and the R-values are 
given in Table 1 and 2, respectively. 
 

Table 1 Coefficients of the hardening laws 
Swift law K  (MPa) 0ε  N  

IF steel 510 0.004 0.2366 
Aluminum 149 0.004 0.2870 
Voce law 

sσ  (MPa) α  β  

A 5086 alloy 380 0.579 -10.35 
 

Table 2 Lankford coefficients 
 

0R  45R  90R  
IF steel 2.30 1.74 2.87 

Aluminum 0.80 0.55 0.89 
A 5086 alloy 0.70 0.86 0.71 

 
 An illustration of the identification of (m, n, p) 
exponents is presented on fig. 4 for IF steel. The 
experimental values of 045 /σσ  and 090 /σσ  are 
represented with intervals corresponding to the values 
determined at different values of expended plastic 
work. The best fit for the evolution of )(ασ  is 
obtained with m = 2, n = 3 and p = 2. The results 
obtained with Hill’s criterion are also shown for 
comparison. 
The (m, n, p) exponents identified for the 3 materials 
are given in Table 3. 
 

Table 3 Values of the (m, n, p) exponents 
 m n p 

IF steel 2 3 2 
Aluminum 2 1 3 

A 5086 alloy 2 3 3 
 

 
Fig. 4 Angular variation of the flow stress σ  

for IF steel 
  

 The second step of the identification procedure 
consists of running the finite element simulations by 
changing the (k, B) pair in order to minimize the cost 
function: 
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where ),( Bkiε  is the value of the major principal 
strain calculated at point i with the current (k, B) pair 
and exp

iε  is the experimental value at point i.  
 The strain fields used for the identification 
procedure are the major principal strains along, (a) the 
symmetry axes of UT/PST specimens corresponding 
to the RD and the TD, (b) the line inclined at 45° from 
the preceding axes (diagonal direction, DD), (c) the 
symmetry axes of UT/EBT specimens corresponding 
to the RD and the TD. To find the minimum of the 
cost function, the response surface was first analyzed 
over a wide (k, B) domain, next over a refined one. 
 An example of the best-fit curves obtained along 
the different lines is given in fig. 5 for IF steel. The 
strain distributions calculated with Hill’s criterion are 
also shown for comparison in order to display the 
high sensitivity of the identification method. 

 Finally, the material parameters (k, A, B, a, b) 
determined for the 3 materials are given in Table 4, 
and the plane stress yield surfaces obtained by the 
identification procedure are shown in fig. 6. 

 
Table 4 Values of the (k, A, B, a, b) parameters 

 k A B a b 
IF steel -1 4.43 5 -0.098 0.730 

Aluminum 0.3 2.31 5 -0.074 0.509 
A 5086 alloy 0.4 2.88 6 -0.005 -0.276 

 

 5. EARING IN CUP DRAWING 
 
 The cup drawing tests were performed with a 
specific device. The punch diameter is equal to        
30 mm. The circular blanks have a diameter of 66 mm 
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UT/PST specimen - RD 

 

UT/PST specimen - DD 

 
UT/EBT specimen - RD  

Fig. 5 Comparison between experimental and calculated strain distributions for IF steel

 

The horizontal lines for UT/PST specimen represent the deformation )/( 0rrLn  of the central hole.

 

 

(a) 

 

(b) 

 

(c) 

Fig. 6 Yield surfaces identified for (a) IF steel, (b) aluminum and (c) A 5086 alloy

 
for IF steel, 51 mm for aluminum and 57 mm for 

A 5086 alloy. The drawing ratio DR, defined by the 
ratio between blank diameter and punch diameter, is 
thus equal to 2.2, 1.7 and 1.9, respectively. 

The numerical simulations of the drawing tests 
were performed using the material parameters 
obtained by the identification procedure (Tables 1-4). 
The comparison between experimental and predicted 
earing profiles is shown in fig. 7. It can be observed 
that the height of ears is well predicted. 

For comparison, the height of ears obtained with 
Hill’s criterion is too large. This behavior should be 
put in correspondence with the unrealistically large 
variations of )(ασ  predicted by Hill’s criterion, 
fig. 4. In agreement with the argument presented in 
section 1, an accurate description of stress anisotropy, 
i.e., of the angular variation of )(ασ , thus is  quite 
important for obtaining an accurate prediction of 
plastic flow and earing formation. 

Following an earlier proposal by Zaky et al. 15], 
an attempt was made to modify the initial contour of 
the blank, in order to obtain ear-free cups. The shape 
of the modified contour is defined by the angular 
variation of the blank radius: 

 
 ( )00 )(1)( HH

DR
−−= αραρ    (8) 

 
where )(αρ  and 0ρ  are the blank radii at the current 
angle α  and at α =0° from RD, respectively, and 

)(αH  and 0H  are the heights of ears obtained on 
circular contours at the current angle α  and at α =0° 
from RD, respectively. 

The pictures of deep-drawn cups obtained on IF 
steel blanks with a circular contour and with a 
modified contour are shown in fig. 8. The modified 
contour was obtained by polishing the edge of an 
initially circular blank in order to satisfy equation 8. 
In comparison with the well-developed ears obtained 
on the circular contour, the angular variations of cup 
height are much less for the modified contour. 
However, we could not avoid slight irregularities on 
the edge of the deep-drawn cup, due to imperfections 
of the initial contour, in spite of the care taken to 
obtain this contour. Indeed, the simulations with the 
modified contour predict a quasi perfect ear-free cup. 
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(a) 
 

(b) 

 

(c) 

Fig. 7 Comparison between experimental and predicted earing profiles for circular blanks. 
(a) IF steel, (b) aluminum, (c) A 5086 alloy 

 

 
Fig. 8 Pictures of deep-drawn cups with initially 

circular and modified contours - IF steel 
 

6. CONCLUSION 
 
 The identification of the anisotropic plastic 
behavior of metal sheets has been performed on three 
materials by combining the results of uniaxial tensile 
tests and heterogeneous biaxial tensile tests. The 
biaxial specimens have been designed in order to 
obtain a high sensitivity of strain fields to the material 
parameters describing the shape of the yield surface in 
the biaxial stretching range. 
The identification procedure consists of two steps. In 
the first step, the uniaxial tensile tests are analyzed to 
determine the hardening law of the material, and the 
parameters of the yield function which allow us to 
obtain a good description of both strain-anisotropy 
(variation of the Lankford coefficient R  in the plane 
of the sheet) and stress-anisotropy (variation of the 
uniaxial flow stress σ  in the plane of the sheet). In 
the second step, an optimization procedure is used to 
minimize the difference between experimental strain 
fields obtained by an image correlation method, and 
numerically-predicted strain fields. The additional 
material parameters of the yield function are 
determined in this way. Based on this identification, 
the earing profile predicted on deep-drawn cups was 
compared with experimental ones. As a result of the 
good description of both strain-anisotropy and stress-
anisotropy, very good predictions of ears are obtained 
in the numerical simulations. A modified contour of 
the blank also has been tested to obtain ear-free cups. 
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