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ABSTRACT 

In this work a mechanistic model for peripheral milling is presented, taking into 
account the flexibility of slender end mills. The contribution of this paper is the 
obtention of the real tool center displacements and the real cutting forces, since the 
model takes into account the instantaneous force balance between the cutting forces 
and the elastic force of the slender tool. 
A deep explanation of the model, some application examples and discussion of the 
results are in the paper. 
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1. INTRODUCTION 

 
The geometrical error caused by tool deflection 

in peripheral milling is a common problem in the 
industry. This fact has lead to the development of 
models to predict the surface and geometrical errors 
by different researchers in the recent years. In 1991, 
Montgomery and Altintas [1] considered the influence 
of milling dynamics on surface generation. In [3,5,8], 
a geometric model of the machined surface is 
developed and used to predict its appearance and 
roughness by considering the sweep volumes by the 
cutting edges in their paths and subtracting them from 
the workpiece.  

In this paper, a model for the prediction of the 
tool deflection in peripheral milling taking into 
account the tool static stiffness is developed. First, the 
mechanistic forces model is presented. Later, the 
procedure followed to obtain the deflections is 
explained. Finally, the model is validated through the 
comparison of the displacements and forces predicted 
by the model with the experimental ones. 

This model can be easily extrapolated to other 
tool geometries, adapting the equations of the 
mechanistic model. The final purpose is the obtention 
of theoretical topographies based on the tool 
deflections calculated [2].  

 
2. NOMENCLATURE 

 
ae: Radial depth of cut (mm) 
ap: Axial depth of cut (mm) 

fz: Feed per tooth (mm) 
f: Feed speed (mm/min) 
D: Diameter of the tool (mm) 
Z: Number of flutes of a tool 
N: Spindle speed (rpm) 
kt, kr, ka: Tangential, radial and axial shearing cutting 
coefficient (N/mm2) 
kx, ky: Static stiffness in X and Y direction  
α: Runout angle 
r: Runout 

 
3. TOOL DEFLECTION MODEL 
 
The model here presented incorporates the effect 

of tool deflection on the forces model to obtain real 
forces and tool displacements in peripheral milling at 
cutting frequencies under the first natural frequency 
of the tool, that is, when a static behaviour for the tool 
motion can be assumed. Here, the forces model is first 
presented, and then the procedure for the calculus of 
the tool static deflections. 

 

3.1 Cutting forces model 
 
The forces model for an end mill is based on a 

mechanistic approach [1,4] which discretizes the 
cutting edge, obtains the forces on each differential 
element and the integrates the forces to take into 
account the contribution to the total forces of each 
element of each cutting edge in cut. The cutting forces 
model on one differential element takes into account 
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the shearing forces and the edge forces by means of a 
tangential, radial and axial component, see Fig. 1.  
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Fig. 1. Schematic representation of the reference 

system. 

 
These components depend on the correspondent 

cutting coefficients, the chip thickness h, the 
differential width of cut db and the differential edge 
length dS: 
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The differential width of cut db depends on the 

geometry of the tool as: 
 

/ sindb dz κ=                         (2) 
 

The angular position of an element of the jth 
cutting edge is defined as a function of the pitch angle 
of the tool φp and the lag angle ψ of the element due 
to the helix angle with respect to the element of that 
edge at z=0:  

 
                ( ) ( ) ( ), 1j pz j zφ φ φ φ ψ= + − −            (3) 

The tangential, radial and axial differential 
forces are projected over the Cartesian axes, indicated 
in Fig. 1, by means of a rotation matrix: 
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The total cutting forces over the jth edge are 

calculated by integration, where the limits of 
integration depend on the angular position of the edge 
due to the helix angle i0 [1].  
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Finallly, the total forces are obtained taking into 

account the contribution of each edge inside the 
cutting area:  
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Fig. 2. Schematic representation of the cutting 
forces and geometrical parameters. 

 
Geometry of the tool and the cutting edge 
The integration of the forces depends on the 

geometry of the tool, which is a function of several 
geometrical parameters of the tool. Since the 
procedure to obtain these parameters has been well 
studied by other authors [4], here it is not 
demonstrated how to obtain them, so only the 
necessary equations are shown. In the flank of an end 
mill, where the helix angle is constant, the height z of 
an edge element is related to the helix angle, the 
diameter of the tool D and the lag angle ψ as:  

 

( )
( )0

0

tan/ 2
tan / 2

z iDz
i D
ψ ψ

⋅⋅
= → =               (8) 

Additional parameters that are needed are the 
radius of each element, 
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( )r z R=
                       (13) 

 
and the corresponding edge lead angle: 
 

κ(z)=90º                         (14)

    
      

 
Finally, the differential edge length can be 

obtained as:  
 

( ) ( )( ) ( )( )22 ' 1jdS z dz r z r z φ⎛ ⎞′= + +⎜ ⎟
⎝ ⎠

   (15) 

 
3.2 Static deflections model 
 
Hypotheses 
In this work, it is assumed that the tool suffers 

only static deflections during the milling. This 
assumption is supposed to work when the cutting 
frequencies are lower than the first natural frequency 
of the tool to keep a low dynamic amplification and a 
phase between forces and displacements near to 0º. In 
that range of cutting frequencies, the stiffness of the 
tool is approximately the static one.  

Hence, it can be supposed that the tool rotates at 
an infinitely low spindle speed and as a consequence, 
at each position, the tool deflects to a position where 
there is a balance between the cutting forces and the 
elastic forces of the tool. In the equation of the motion 
of the tool the terms of damping and inertia are thus 
neglected: 
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 (16) 

 
As it can be seen only the tool deflections in the 

XY plane have been considered.  
It is also assumed that the tool has the same 

stiffness along the cutting edge, which is valid for 
relatively low depths of cut.  

Iterative algorithm  
Although Eq. 16 is apparently a simple equation 

to solve, the fact is that the relation between cutting 
forces and displacements is not explicit. In Eq. 1, it 
can be seen that the forces depend on the chip 
thickness, which depends on the displacements of the 
tool and the tool runout r: 

 
( )sin cos sin cos sinzh f r x yφ α φ φ κ= + + Δ + Δ   (17) 

 
Where the displacements take into account the 

deflection on the previous tooth engagement: 
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( ) ( )
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                      (18) 

 

Hence, to obtain the static deflections, the 
following iterative procedure has been programmed: 

First, for a given tool geometry and a set of 
cutting parameters, the total cutting forces Fx, Fy, Fz 
are obtained at an initial angular positionφ. These 
forces are calculated assuming that the TCP is in x=0, 
y=0. 

The deflection caused by these forces is 
obtained as: 

 

; yx

x y

FF
x y

k k
′ ′= =                            (19) 

 
In a flexible tool, the cutting forces generate a 

displacement of the tool which changes the real chip 
thickness affecting again the cutting forces. Only 
when the displacements generated are similar to the 
ones used to calculate the forces, it can be said that 
there is a balance between the cutting force and the 
elastic force of the tool, and the displacements and 
forces obtained are realistic.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. Iterative procedure for the obtention of the 
static deflections in the TCP. 

 
Hence, if the difference between the initial TCP 

position (x,y) and the TCP obtained (x’,y’) is lower 
than a threshold value (ex,ey), the calculation of the 
deflection for the next angular position is started. If 
not, the new position is fed back to calculate new 
forces until the difference of positions x-x’ and y-y’ is 
lower than the threshold value. The magnitude of the 
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threshold values determines the accuracy of the 
calculation.  Also, it is needed to recalculate the radial 
depth of cut as it is affected by the displacement in Y 
direction. Finally, to ensure the convergence of the 
algorithm, the displacements fed back are multiplied 
by a factor lower than 1. The higher the factor, the 
faster the calculus, although it rises the risk of 
convergence problems. Fig. 3 summarizes the 
proposed procedure. 

 
3.3 Comparison rigid tool-flexible tool 
 
To study the influence of the tool flexibility, the 

forces and displacements for a flexible tool and a rigid 
tool under the same cutting conditions have been 
calculated and compared. The cutting conditions are 
down-milling, axial depth of cut 8 mm, radial depth of 
cut of 3 mm, feed per tooth 0,05 mm, and an end mill 
of 16 mm of diameter, 2 cutting edges and 30º of 
helix angle.  

Figure 4 shows the comparison between the 
forces in an infinitely rigid tool and a flexible tool. 
While the forces in the stiff tool remain always the 
same, the forces on the flexible tool are initially 
lower, since the tool cuts less material than the 
imposed due to the deflection. However, the machine 
tool imposes a feed per revolution, so the tool is 
finally carried by the machine, and in the following 
revolutions it cuts the stock of material that was not 
initially cut. It can be seen in the Fig. 4 how after the 
first revolution, the forces increase due to the stock 
removal, and then they stabilize to a value similar to 
the forces in the rigid tool.  

 
The explanation for this behaviour can be found 

in the balance between the cutting forces that deflect 
the tool and the elastic forces of the tool that 
counteract the deflection. When this balance is 
reached in a flexible tool, the cutting forces are the 
same as in a rigid tool. However, while the rigid tool 
remains immovable, the flexible tool deflects. In fact, 
in the Fig. 5 it can be seen how the displacements of 
the tool increase also until they stabilize.  
 

Regarding the algorithm, for very low tool 
stiffnesses and agressive cutting conditions, the 
algorithm has problems of convergence. Nevertheless, 
those cutting conditions are usually unreal. For usual 
cutting conditions the convergence of the algorithm is 
faster as the stiffness of the tool is higher. The 
explanation is that the behaviour of a very flexible 
tool differs too much from the one of a rigid tool; 
hence, to find the balance between the elastic forces 
and the cutting forces, a higher number of iterations 
are needed.  
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Fig. 4. Cutting forces in X and Y direction: 
Flexible tool  (dashed line) and rigid tool (solid 

line). 

 
For the cases where the convergence of the 

algorithm fails, it will be interesting for future works 
to study if it is possible to experimentally find a static 
unstability in the tool behaviour, or if this unstability 
only occurs in the algorithm, or if other phenomenons 
as regenerative chatter predominate, before the static 
unstability appearance.   
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Fig. 5. Tool displacements: in X direction (solid line), 
in Y direction (dashed line).  
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3. EXPERIMENTAL VALIDATION 
 
 The model has been validated by means of 
several cutting tests on a five-axis milling machine 
with a workpiece of Aluminum 7075-T6. The tool is 
an end mill with a diameter of 16 mm, two cutting 
edges, 30º of helix angle and an overhang of 105 mm.  
The tool runout was measured, resulting in an 
eccentricity of 0,04 mm where the maximum 
eccentricity was at an angle of 110º with respect to the 
cutting edge taken as a reference. The cutting 
coefficients of the tool and material pair are 
ktc=870N/mm2, krc=62 N/mm2, kac=60 N/mm2, kte=12 
N/mm, kre=20 N/mm and kae=0 N/mm. The tests were 
performed at very low cutting frequencies, 690 rpm, 
to avoid dynamic effects. Four tests were done with a 
radial depth of cut of 0,5 and 1 mm, in down-milling. 
The axial depth of cut was 8,8 mm, and the feed speed 
was 250 mm/min and 500 mm/min. 
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Fig. 6. Forces and displacements for test 1: 
ae=0,5mm, vf=250mm/min. 

 
The tool displacements in X and Y direction 

during the cutting process were measured at the tool 
shank using two Eddy-current displacement sensors 
located at 46 mm from the tool nose. These 
displacements were later extrapolated to the tool nose 
measuring the stiffness ratio between the two points. 
On the other hand, the cutting forces were measured 
by means of a dynamometric table capable of 
measuring forces in X, Y and Z direction. The force 
and displacement signal were recorded by means of a 
signal analyzer at a sampling frequency of 16384 Hz, 
and were later low-pass filtered at a cutting frequency 
of 300Hz. 

 
The measurement of the static stiffness is made 

by pushing the tool nose against the dynamometric 

table in X and Y direction. Imposing a known 
displacement of the tool onto the table of 0,1 mm and 
measuring the force registered, the static stiffness can 
be obtained. The stiffness measured at the tool nose 
was kx= 1105 N/m and ky=1380 N/m, and, at 46mm, 
kx=2806 N/m and ky=3505 N/m. Bearing in mind that 
the tool is axisymmetrical, the asymmetry between kx 
and ky appears to be extrange. However, it must be 
reminded that the tool only a part of the whole 
stiffness chain tool-toolholder-spindle-machine, 
where the machine, which is not axisymmetrical with 
respect to the tool axis, plays an important role [7].  
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Fig. 7. Forces and displacements for test 2: 
ae=0,5mm, vf=500mm/min. 
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Fig. 8. Forces and displacements for test 3: 
ae=1mm, vf=250mm/min. 
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Fig. 9. Forces and displacements for test 4: 
ae=1mm, vf=500mm/min. 

 
The comparison between the forces and 

displacements measured and the ones calculated is 
shown in Figs. 6 to 9. The dashed thick line represents 
the calculated forces and displacements, the dashed 
dot thick line represents the measured forces and 
displacements, and the thin line in the displacements 
represents the tool displacements due to the tool 
runout before the cutting. The simulations made for 
comparison took into account the first 5 revolutions of 
the tool, as the evolution of the forces stabilized 
fastly. The time required for the calculations was of 
214 seconds in Matlab 7, with a CPU with an Intel 
Celeron at 1,73 GHz and 2,00 GB of RAM.  

 
In the tests shown, the experimental 

measurements match reasonably well the predictions 
of the model. These tests have been made at a main 
cutting frequency of 23 Hz, though, almost 20 times 
lower than the measured natural frequency of the tool, 
458 Hz.  The validity of the model has been proved 
but only in the range of static behaviour of the tool, 
where the model is expected to work. Hence, the 
model should fail to predict the tool deflection cutting 
near the natural frequency of the tool. Nevertheless, 
the assumption of static behaviour can be assumed in 
a lot of industrial cases, milling low machinability 
materials, hard materials, or even in micro milling.  
 

4. CONCLUSIONS 
 
 The main contribution of this work is the 
development of an iterative model for the tool static 
deflection obtention based on the instantaneous force 
balance between the cutting forces and the elastic 
force of the slender tool. The model predicts the static 

deflection by means of a feedback of the 
displacements obtained by the cutting forces model 
into the chip thickness model.  
 

The model predicts that although in the initial 
revolution a flexible tool deflects cutting less than the 
feed per tooth, the tool finally always ends following 
the feed imposed by the machine-tool, hence the 
cutting forces are similar to a rigid tool. This has been 
explained by the balance that appears when the elastic 
forces counteract the deflection caused by the cutting 
forces.  

 
The algorithm has proved to be reliable and due 

to the feedback performed, it only has problems of 
convergence in aggressive yet unreal cutting 
conditions.  

 
The experimental validation shows that the 

displacements and forces predicted by the model are 
reliable whenever the cutting frequencies are much 
lower than the first natural frequency, and a static 
behaviour can be assumed.   
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