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ABSTRACT 

Shear stresses occur in almost any applications during machining of mechanical 
parts.  Inhomogeneities perturb the stress field in working pieces, meaning that they 
are responsible of a strong stress gradient and therefore cracks may occur in the 
regions in the vicinity of these inhomogeneities. The present paper presents some 
results concerning the stress state for a plane with two circular identical holes, 
subjected to pure shearing. To find the stress state the authors used analytical and 
numerical methods, on the basis of theory of elasticity hypothesis. The analytical 
method is based on the Airy’s stress function method, using bipolar coordinates. The 
stress fields (principal shearing and principal normal stresses), plotted using 
Mathcad application were compared with the stress fields obtained by FEA, using 
Catia application. An excellent agreement is found between the plotted stresses 
obtained by the mentioned methods. 
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1. INTRODUCTION 
 

The paper presents analytical and FEM 
approaches for solving the stress state from an elastic 
plane with two identical circular holes.  The loading 
of the plane at infinity is pure shearing, as seen in 
Figure 1. Finally, a very good agreement between the 

two analysis methods can be observed, despite the 
fact that the finite element method assumes working 
with finite domain and concrete elastic characteristics 
of the part.  Muskhelishvili, [1], emphasises that for 
the elastic plane, under the assumptions that hole 
contours are free of loading, the stress state does not 
depend on the elastic characteristics of the material. 

 
Fig. 1.  Geometry and loading 
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2. THEORETICAL REMARKS 

 
In order to find the analytical solution, the 

bipolar co-ordinates α and β are used.  The mentioned 
co-ordinates allow the employ of simple forms of 
boundary conditions.  The relationships between 
Cartesian and bipolar co-ordinates are expressed by 
the following equations: 
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where a is a constant with length dimension.  The 
equations for the contours of the two holes in bipolar 
co-ordinates are given by the relation: 
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where d is the distance between the holes’ centres and 
r is the holes’ radius.  The ”+” signum is adopted in 
equation (2) for the hole from the upper half-plane 
and the “-“ signum for the hole in the lower half-
plane.   
 The analytical solution is based on finding the 
Airy’s function.  The Airy’s function is constructed in 
bipolar co-ordinates as a sum of two elastic potentials:  
first, a characteristic potential for the compact plane 
having the same loading and secondly, an auxiliary 
one, needed to impose the boundary conditions.  

In Cartesian co-ordinates, the elastic potential 
characteristic for the sheared plane has the well-
known expression, Timoshenko, [2]: 
 

xy)y,x(U 0τ=  (3) 
 
Jeffery, [3], shows that in bipolar co-ordinates, the 
auxiliary potential ),(U βα  must be replaced by the 
function: 
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where: 
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Therefore, the potential function for the sheared 
compact plane takes the following form: 
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where 0τ  is the loading of the elastic plane at infinity.  
As the two holes are placed symmetrically about the 
axis Ox, ( 0=α ), Jeffery, [3], recommends the 
general form of the auxiliary potential necessary to be 
added to the F(α,β) function, as follows: 
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The boundary conditions on the contours of the two 
holes are expressed by the equations: 
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(8.a) 
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Since the elastic plane is unlimited, a supplementary 
condition is required to satisfy the regularity condition 
for stresses at infinity, together with the boundary 
conditions 8.a and 8.b.  It is easily noticeable that the 
U(x,y) potential does not produce stresses at infinity, 
and therefore, the above condition must be imposed 
only to the auxiliary potential.  One can demonstrate 
that for an auxiliary potential tending to zero at 
infinity, the regularity condition for the stresses is 
fulfilled.  The points from infinity from Cartesian 

plane, (±∞), are mapped under equations (1), into the 
point 0,0 =β=α  from the plane (α,β).  As a 
consequence, the continuity conditions for the stresses 
at infinity lead to the condition: 
 

0
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In order to impose the boundary conditions, the 
Fourier series expanding for the function ),(F βα  is 
required.  It must be emphasized that the expanding 
has different forms for the upper, ( 0>α ), and lower, 
( 0<α ), half-planes, as it follows: 
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Imposing the conditions of equal coefficients for the 
functions )ksin( β , both from the total potential 
[ ]),(),(F βαΦ+βα  and from equations for boundary 
conditions, 8.a and 8.b, together with (9), the 

unknown coefficients of auxiliary potential can be 
found.  
The stresses are obtained in bipolar co-ordinates, 
using the stress function, ),(U βα , via the equations: 
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Another way to obtain pure shearing in an elastic 
plane is stretching it on one direction and 
compressing it on the normal direction. The 
distributed loadings must have the same absolute 
value, as shown in Figure 2.  
 
 

 
 
 

Fig. 2.  The second method used for obtaining pure 
shearing in a plane 

 
The stress state at infinity is characterised by the 
following stress tensor, expressed for the two loading 
methods: 
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 3. RESULTS 
 

The stress state from a plane with two circular 
holes, stretched on two normal directions, one of them 
being parallel to the axis of the centres, was found by 
Alaci, [4]. Using the results and applying the 
superposition principle, the stress state for the second 
loading case can be immediately found.   
In Figure 3a, there are represented the circular 
contours of the holes and the hoop stress variation on 
these contours.  The polar co-ordinate representation 
of hoop stress variation shows only a qualitative 
aspect, as the shape of the curves for stress 
representation depends on the scale and on the 
considered positive sense with respect to position 
vector of current point on the contour of the hole 
originated in the centre of hole.  By developing the 
contour of the hole, it results the Cartesian variation 
of the hoop stress from which quantitatively 
conclusions can be drawn, Figure 3b.  
In Figure 4 it is revealed that the stress maxβσ  on the 
contour of hole presents a rapid decrease, from 
infinity, when the holes are tangent, to the value 3 for 
remote holes.  The dimensionless stress was obtained 
by dividing the hoop stress to the shear stress 0τ  that 
acts on the plane at infinity.  It is interesting that 
concentration factor has the same value as for the case 
of a uniaxial stretched plane with a circular hole, 
(Kirsch’s problem, cited by Love, [6]). 

The analytically isochromatics patterns, namely 
the principal shearing stress patterns, [5], 
corresponding to the above mentioned loading cases, 
are presented in Figure 5.   

In Figure 6 are presented the maximum normal 
stresses, analytically found, for the two loading cases.   
One can observe, and the result is quite intriguing, 
that the stress patterns do not coincide, when the two 
loading cases form Figure 1 and Figure 2 respectively, 
are compared. 
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Fig. 3. Hoop stress on the holes contour 

 

 
Fig. 4.  Maximum hoop stress on the contour of the 

hole versus distance between holes centres 
 

 
 
In Figure 6a, corresponding to loading case 

with shearing stresses at infinity, one can observe 
that the principal normal stress appears on a plane 
that bisects the solid angle between Ox and Oy 
planes.  More correct, the stress tensor 1T̂  for the 

case (a) is not in canonical form, as the tensor 2T̂  

is.  The eigenvalues of 1T̂  tensor are 0τ±  but the 

eigenvectors are oriented at o45  with respect to the 
holes’ axis.   
 

τ max  
τ max  

 
Fig. 5.  Isochromatics patterns analytically obtained for the loading cases from Fig. 1, (a), and Fig. 2, (b).  

b) a) 
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σ max  
σ max  

Fig. 6.  Maximum normal stresses, analytically found, for the two loading cases   
 

 
Fig. 7. Proposed loading scheme 

 

Unfortunately, the theory of elasticity gives analytical 
solution for a narrow number of problems.  The 
reason is that complicated forms for the boundary 
conditions appear in practical applications.  For the 
latter, currently, the most convenient method consists 
in numerical approach, such as finite element method.  
The problems having analytical solution provide as 
validation method for numerical procedures.  In many 
cases it can happen that the latter have a diminished 
convergence or don’t lead to a finite result.  The 
loading cases presented in the paper were solved 
using CATIA Finite Element Analysis. The numerical 
results are presented comparatively with the 
theoretical results in Figures 8 and 9.   

Comparing the graphs of the stresses obtained 
analytically with the stress contours obtained by FEA, 
one can observe a perfect agreement.      

 

(a) 

(b) 

 

Fig. 8.  Isochromatics patterns, (a), theoretical and (b), numerically obtained by FEA 

a) b) 
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(a) 
(b) 

 
Fig. 9.  Principal normal stress pattern, (a), theoretical and (b), numerically obtained by FEA 

 
 
4. CONCLUSIONS 

 
The maximum stress is the hoop stress on the 

contour of the holes and it can be concluded that the 
holes are stress concentrators for the plane.   

As forecasted, the concentrator effect played by 
the holes is strict locally, at distances relatively small 
from the centres of the holes (maximum 5 diameters), 
the stresses have the pattern similar to the stresses 
from a compact plane.  

The maximum hoop stress appears on the 
contour of the holes in the points where the distance 
between the two contours has a minimum value.   

The stress concentrator factor ranges between 4, 
value for the case of remote holes (there is no 
interaction between the holes), and any value greater 
than 4, as the contours come closer.  

Finite element analysis is a very convenient 
method in evaluating the stress state for an elastic 
plane with different type loadings and geometries.  
For the present paper, the case of part with two holes, 
subjected to shearing, revealed stresses in very good 
agreement with the stresses found by the method of 
Airy’s stress function.  
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