Modeling and optimization of phenolic compounds extraction from prickly pear (Opuntia Ficus-Indica) seeds via ultrasound-assisted technique

  • Meriem Amrane-Abider Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Algeria
  • Cristina Nerin Aragón Institute for Engineering Research (I3A), University of Zaragoza, Spain
  • Elena Canellas Aragón Institute for Engineering Research (I3A), University of Zaragoza, Spain
  • Fatiha Benkerrou Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Algeria
  • Hayette Louaileche Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Algeria
Keywords: Opuntia ficus-indica seeds, phenolic compounds, antioxidant activity, ultrasound, Box-Behnken design

Abstract

Optimal conditions of total phenolic contents (TPC) and antioxidant activity (AA) from Opuntia ficus-indica (OFI) seeds using ultrasound-assisted extraction (USAE) and response surface methodology (RSM) were investigated. The Box–Behnken design was used to investigate the effects of three independent variables: acetone concentration (40-80%), ultrasonic time (5-15 min) and sonication amplitude (40-100%). The experimental values of TPC and AA under the optimal conditions were 4.70± 0.13 mg GAE/g DW and 2.15±0.02 mg GAE/g DW,
respectively. High Performance Liquid Chromatography analysis in optimized conditions revealed the presence of 10 and 9 phenolic compounds respectively, which were then identified and quantified. The effect of optimum extraction conditions using USAE on cell surface changes of OFI seeds powder was observed by scanning electron microscopy.

References

Bachir bey, M., Meziant, L., Benchikh, Y., Louaileche, H. 2014. Deployment of response surface methodology to optimize recovery of dark fresh fig (Ficus carica L., var. Azenjar) total phenolic compounds and antioxidant activity. Food Chemistry, 162, 277- 282.
Bensadón, S., Hervert-Hernández, D., Sáyago-Ayerdi, S.G., Goñi, I. 2010. By-products of Opuntia ficus-indica as a source of antioxidant dietary fiber. Plant Foods for Human Nutrition, 65, 210-216.
Chaalal, M., Louaileche, H., Touati, N., Bey, M.B. 2013. Phytochemicals, in vitro antioxidant capacity and antiradical potential of whole and ground seeds of three prickly pear varieties: a comparative study. Industrial Crops and Products, 49, 386-391.
Cheok, C.Y., Chin, N.L., Yusof, Y.A., Talib, R.A., Law, C.L. 2012. Optimization of total phenolic content extracted from Garcinia mangostana Linn. hull using response surface methodology versus artificial neural network. Industrial Crops and Products, 40, 247- 253.
Fan, J.-P., Cao, J., Zhang, X.-H., Huang, J.-Z., Kong, T., Tong, S., Tian, Z.-Y., Xie, Y.-L., Xu, R., Zhu, J.-H. 2012. Optimization of ionic liquid based ultrasonic assisted extraction of puerarin from Radix Puerariae Lobatae by response surface methodology. Food Chemistry, 135, 2299-2306.
Fattahi, M., Rahimi, R. 2016. Optimization of extraction parameters of phenolic antioxidants from leaves of Capparis spinosa using response surface methodology. Food Analytical Methods, 9(8), 2321-2334.
Habibi, Y., Mahrouz, M., Vignon, M.R. 2005. Arabinan-rich polysaccharides isolated and characterized from the endosperm of the seed of Opuntia ficus-indica prickly pear fruits. Carbohydrate Polymers, 60, 319-329.
Ilaiyaraja, N., Likhith, K., Babu, G.S., Khanum, F. 2015. Optimisation of extraction of bioactive compounds from Feronia limonia (wood apple) fruit using response surface methodology (RSM). Food Chemistry, 173, 348-354.
Inglese, P., Barbera, G., La Mantia, T. 1995. Research strategies for the improvement of cactuspear (Opuntia ficus-indica) fruit quality and production. Journal of Arid Environments, 29, 455-468.
Jerman, T., Trebše, P., Vodopivec, B.M. 2010. Ultrasound-assisted solid liquid extraction (USLE) of olive fruit (Olea europaea) phenolic compounds. Food Chemistry, 123, 175- 182.
Khan, M.K., Abert-Vian, M., Fabiano-Tixier, A.-S., Dangles, O., Chemat, F. 2010. Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chemistry, 119, 851-858.
Kong, Y., Zu, Y.-G., Fu, Y.-J., Liu, W., Chang, F.-R., Li, J., Chen, Y.-H., Zhang, S., Gu, C.-B. 2010. Optimization of microwave-assisted extraction of cajaninstilbene acid and pinostrobin from pigeonpea leaves followed by RP-HPLC-DAD determination. Journal Food of Composition Analysis, 23, 382-388.
Molyneux, P. 2004. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science and Technology, 26, 211-219.
Ranic, M., Nikolic, M., Pavlovic, M., Buntic, A., Siler-Marinkovic, S., DimitrijevicBrankovic, S. 2014. Optimization of microwave-assisted extraction of natural antioxidants from spent espresso coffee grounds by response surface methodology. Journal of Cleaner Production, 80, 69-79.
Sawaya, W., Khalil, J., Al-Mohammad, M. 1983. Nutritive value of prickly pear seeds, Opuntia ficus-indica. Plant Foods for Human Nutrition, 33, 91-97.
Song, J., Li, D., Liu, C., Zhang, Y. 2011. Optimized microwave-assisted extraction of total phenolics (TP) from Ipomoea batatas leaves and its antioxidant activity. Innovative Food Science and Emerging Technologies, 12, 282-287.
Spigno, G., De Faveri, D. 2009. Microwave-assisted extraction of tea phenols: A phenomenological study. Journal of Food Engineering, 93, 210-217.
Teng, H., Choi, Y.H. 2014. Optimization of ultrasonic-assisted extraction of bioactive alkaloid compounds from rhizoma coptidis (Coptis chinensis Franch.) using response surface methodology. Food Chemistry, 142, 299-305.
Toma, M., Vinatoru, M., Paniwnyk, L., Mason, T. 2001. Investigation of the effects of ultrasound on vegetal tissues during solvent extraction. Ultrasonics Sonochemistry, 8, 137-142.
Tomšik, A., Pavlić, B., Vladić, J., Ramić, M., Brindza, J., Vidović, S. 2016. Optimization of ultrasound-assisted extraction of bioactive compounds from wild garlic (Allium ursinum L.). Ultrasonics Sonochemistry, 29, 502-511.
Velioglu, Y., Mazza, G., Gao, L., Oomah, B. 1998. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry, 46, 4113-4117.
Wang, J., Sun, B., Cao, Y., Tian, Y., Li, X. 2008. Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chemistry, 106, 804-810.
Wang, L., Weller, C.L. 2006. Recent advances in extraction of nutraceuticals from plants. Trends in Food Science &Technology, 17, 300-312.
Wei, Z.-F., Wang, X.-Q., Peng, X., Wang, W., Zhao, C.-J., Zu, Y.-G., Fu, Y.-J. 2015. Fast and green extraction and separation of main bioactive flavonoids from Radix
Scutellariae. Industrial Crops and Products, 63, 175-181.
Ying, Z., Han, X., Li, J. 2011. Ultrasound-assisted extraction of polysaccharides from mulberry leaves. Food Chemistry, 127, 1273-1279.
Zhang, S.-q., Bi, H.-m., Liu, C.-j. 2007. Extraction of bio-active components from Rhodiola sachalinensis under ultrahigh hydrostatic pressure. Separation and Purification
Technology, 57, 277-282.
Published
2018-11-20
How to Cite
Amrane-Abider, Meriem, Cristina Nerin, Elena Canellas, Fatiha Benkerrou, and Hayette Louaileche. 2018. “Modeling and Optimization of Phenolic Compounds Extraction from Prickly Pear (Opuntia Ficus-Indica) Seeds via Ultrasound-Assisted Technique”. The Annals of the University Dunarea De Jos of Galati. Fascicle VI - Food Technology 42 (2), 109-21. https://www.gup.ugal.ro/ugaljournals/index.php/food/article/view/1136.
Section
ORIGINAL ARTICLES

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.